900 research outputs found

    A methodology for speeding up loop kernels by exploiting the software information and the memory architecture

    Get PDF
    It is well-known that today׳s compilers and state of the art libraries have three major drawbacks. First, the compiler sub-problems are optimized separately; this is not efficient because the separate sub-problems optimization gives a different schedule for each sub-problem and these schedules cannot coexist as the refining of one, causes the degradation of another. Second, they take into account only part of the specific algorithm׳s information. Third, they take into account only a few hardware architecture parameters. These approaches cannot give an optimal solution. In this paper, a new methodology/pre-compiler is introduced, which speeds up loop kernels, by overcoming the above problems. This methodology solves four of the major scheduling sub-problems, together as one problem and not separately; these are the sub-problems of finding the schedules with the minimum numbers of (i) L1 data cache accesses, (ii) L2 data cache accesses, (iii) main memory data accesses, (iv) addressing instructions. First, the exploration space (possible solutions) is found according to the algorithm׳s information, e.g. array subscripts. Then, the exploration space is decreased by orders of magnitude, by applying constraint propagation to the software and hardware parameters. We take the C-code and the memory architecture parameters as input and we automatically produce a new faster C-code; this code cannot be obtained by applying the existing compiler transformations to the original code. The proposed methodology has been evaluated for five well-known algorithms in both general and embedded processors; it is compared with gcc and clang compilers and also with iterative compilation

    A binary neural k-nearest neighbour technique

    Get PDF
    K-Nearest Neighbour (k-NN) is a widely used technique for classifying and clustering data. K-NN is effective but is often criticised for its polynomial run-time growth as k-NN calculates the distance to every other record in the data set for each record in turn. This paper evaluates a novel k-NN classifier with linear growth and faster run-time built from binary neural networks. The binary neural approach uses robust encoding to map standard ordinal, categorical and real-valued data sets onto a binary neural network. The binary neural network uses high speed pattern matching to recall the k-best matches. We compare various configurations of the binary approach to a conventional approach for memory overheads, training speed, retrieval speed and retrieval accuracy. We demonstrate the superior performance with respect to speed and memory requirements of the binary approach compared to the standard approach and we pinpoint the optimal configurations

    On Designing Multicore-aware Simulators for Biological Systems

    Full text link
    The stochastic simulation of biological systems is an increasingly popular technique in bioinformatics. It often is an enlightening technique, which may however result in being computational expensive. We discuss the main opportunities to speed it up on multi-core platforms, which pose new challenges for parallelisation techniques. These opportunities are developed in two general families of solutions involving both the single simulation and a bulk of independent simulations (either replicas of derived from parameter sweep). Proposed solutions are tested on the parallelisation of the CWC simulator (Calculus of Wrapped Compartments) that is carried out according to proposed solutions by way of the FastFlow programming framework making possible fast development and efficient execution on multi-cores.Comment: 19 pages + cover pag

    A methodology pruning the search space of six compiler transformations by addressing them together as one problem and by exploiting the hardware architecture details

    Get PDF
    Today’s compilers have a plethora of optimizations-transformations to choose from, and the correct choice, order as well parameters of transformations have a significant/large impact on performance; choosing the correct order and parameters of optimizations has been a long standing problem in compilation research, which until now remains unsolved; the separate sub-problems optimization gives a different schedule/binary for each sub-problem and these schedules cannot coexist, as by refining one degrades the other. Researchers try to solve this problem by using iterative compilation techniques but the search space is so big that it cannot be searched even by using modern supercomputers. Moreover, compiler transformations do not take into account the hardware architecture details and data reuse in an efficient way. In this paper, a new iterative compilation methodology is presented which reduces the search space of six compiler transformations by addressing the above problems; the search space is reduced by many orders of magnitude and thus an efficient solution is now capable to be found. The transformations are the following: loop tiling (including the number of the levels of tiling), loop unroll, register allocation, scalar replacement, loop interchange and data array layouts. The search space is reduced (a) by addressing the aforementioned transformations together as one problem and not separately, (b) by taking into account the custom hardware architecture details (e.g., cache size and associativity) and algorithm characteristics (e.g., data reuse). The proposed methodology has been evaluated over iterative compilation and gcc/icc compilers, on both embedded and general purpose processors; it achieves significant performance gains at many orders of magnitude lower compilation time

    Fault Injection for Embedded Microprocessor-based Systems

    Get PDF
    Microprocessor-based embedded systems are increasingly used to control safety-critical systems (e.g., air and railway traffic control, nuclear plant control, aircraft and car control). In this case, fault tolerance mechanisms are introduced at the hardware and software level. Debugging and verifying the correct design and implementation of these mechanisms ask for effective environments, and Fault Injection represents a viable solution for their implementation. In this paper we present a Fault Injection environment, named FlexFI, suitable to assess the correctness of the design and implementation of the hardware and software mechanisms existing in embedded microprocessor-based systems, and to compute the fault coverage they provide. The paper describes and analyzes different solutions for implementing the most critical modules, which differ in terms of cost, speed, and intrusiveness in the original system behavio

    Empowering a helper cluster through data-width aware instruction selection policies

    Get PDF
    Narrow values that can be represented by less number of bits than the full machine width occur very frequently in programs. On the other hand, clustering mechanisms enable cost- and performance-effective scaling of processor back-end features. Those attributes can be combined synergistically to design special clusters operating on narrow values (a.k.a. helper cluster), potentially providing performance benefits. We complement a 32-bit monolithic processor with a low-complexity 8-bit helper cluster. Then, in our main focus, we propose various ideas to select suitable instructions to execute in the data-width based clusters. We add data-width information as another instruction steering decision metric and introduce new data-width based selection algorithms which also consider dependency, inter-cluster communication and load imbalance. Utilizing those techniques, the performance of a wide range of workloads are substantially increased; helper cluster achieves an average speedup of 11% for a wide range of 412 apps. When focusing on integer applications, the speedup can be as high as 22% on averagePeer ReviewedPostprint (published version

    Coarse-grained reconfigurable array architectures

    Get PDF
    Coarse-Grained Reconfigurable Array (CGRA) architectures accelerate the same inner loops that benefit from the high ILP support in VLIW architectures. By executing non-loop code on other cores, however, CGRAs can focus on such loops to execute them more efficiently. This chapter discusses the basic principles of CGRAs, and the wide range of design options available to a CGRA designer, covering a large number of existing CGRA designs. The impact of different options on flexibility, performance, and power-efficiency is discussed, as well as the need for compiler support. The ADRES CGRA design template is studied in more detail as a use case to illustrate the need for design space exploration, for compiler support and for the manual fine-tuning of source code

    Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions

    Get PDF
    In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, several software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context, reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated in the existing deep learning ecosystem to provide a tunable balance between performance, power consumption and programmability. In this paper, a survey of the existing CNN-to-FPGA toolflows is presented, comprising a comparative study of their key characteristics which include the supported applications, architectural choices, design space exploration methods and achieved performance. Moreover, major challenges and objectives introduced by the latest trends in CNN algorithmic research are identified and presented. Finally, a uniform evaluation methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA toolflows.Comment: Accepted for publication at the ACM Computing Surveys (CSUR) journal, 201
    corecore