41,686 research outputs found

    Elasticity of demand and highway scheme benefit evaluation

    Get PDF
    DIADEM (Dynamic Integrated Assignment and Demand Modelling) software package has been recently introduced to complement the variable demand modeling process. The fundamental impetus of DIADEM is to test the robustness of highway scheme benefits and this software package is intended to be complementary to conventional demand modeling software. This paper tests a small hypothetical network of a town in the UK to compare the benefits under the current conventional methodology and under the DIADEM methodology

    BlogForever D2.6: Data Extraction Methodology

    Get PDF
    This report outlines an inquiry into the area of web data extraction, conducted within the context of blog preservation. The report reviews theoretical advances and practical developments for implementing data extraction. The inquiry is extended through an experiment that demonstrates the effectiveness and feasibility of implementing some of the suggested approaches. More specifically, the report discusses an approach based on unsupervised machine learning that employs the RSS feeds and HTML representations of blogs. It outlines the possibilities of extracting semantics available in blogs and demonstrates the benefits of exploiting available standards such as microformats and microdata. The report proceeds to propose a methodology for extracting and processing blog data to further inform the design and development of the BlogForever platform

    Prediction of Emerging Technologies Based on Analysis of the U.S. Patent Citation Network

    Full text link
    The network of patents connected by citations is an evolving graph, which provides a representation of the innovation process. A patent citing another implies that the cited patent reflects a piece of previously existing knowledge that the citing patent builds upon. A methodology presented here (i) identifies actual clusters of patents: i.e. technological branches, and (ii) gives predictions about the temporal changes of the structure of the clusters. A predictor, called the {citation vector}, is defined for characterizing technological development to show how a patent cited by other patents belongs to various industrial fields. The clustering technique adopted is able to detect the new emerging recombinations, and predicts emerging new technology clusters. The predictive ability of our new method is illustrated on the example of USPTO subcategory 11, Agriculture, Food, Textiles. A cluster of patents is determined based on citation data up to 1991, which shows significant overlap of the class 442 formed at the beginning of 1997. These new tools of predictive analytics could support policy decision making processes in science and technology, and help formulate recommendations for action

    Towards Adversarial Malware Detection: Lessons Learned from PDF-based Attacks

    Full text link
    Malware still constitutes a major threat in the cybersecurity landscape, also due to the widespread use of infection vectors such as documents. These infection vectors hide embedded malicious code to the victim users, facilitating the use of social engineering techniques to infect their machines. Research showed that machine-learning algorithms provide effective detection mechanisms against such threats, but the existence of an arms race in adversarial settings has recently challenged such systems. In this work, we focus on malware embedded in PDF files as a representative case of such an arms race. We start by providing a comprehensive taxonomy of the different approaches used to generate PDF malware, and of the corresponding learning-based detection systems. We then categorize threats specifically targeted against learning-based PDF malware detectors, using a well-established framework in the field of adversarial machine learning. This framework allows us to categorize known vulnerabilities of learning-based PDF malware detectors and to identify novel attacks that may threaten such systems, along with the potential defense mechanisms that can mitigate the impact of such threats. We conclude the paper by discussing how such findings highlight promising research directions towards tackling the more general challenge of designing robust malware detectors in adversarial settings

    Political Text Scaling Meets Computational Semantics

    Full text link
    During the last fifteen years, automatic text scaling has become one of the key tools of the Text as Data community in political science. Prominent text scaling algorithms, however, rely on the assumption that latent positions can be captured just by leveraging the information about word frequencies in documents under study. We challenge this traditional view and present a new, semantically aware text scaling algorithm, SemScale, which combines recent developments in the area of computational linguistics with unsupervised graph-based clustering. We conduct an extensive quantitative analysis over a collection of speeches from the European Parliament in five different languages and from two different legislative terms, and show that a scaling approach relying on semantic document representations is often better at capturing known underlying political dimensions than the established frequency-based (i.e., symbolic) scaling method. We further validate our findings through a series of experiments focused on text preprocessing and feature selection, document representation, scaling of party manifestos, and a supervised extension of our algorithm. To catalyze further research on this new branch of text scaling methods, we release a Python implementation of SemScale with all included data sets and evaluation procedures.Comment: Updated version - accepted for Transactions on Data Science (TDS
    • 

    corecore