5,289 research outputs found

    adPerf: Characterizing the Performance of Third-party Ads

    Get PDF
    Monetizing websites and web apps through online advertising is widespread in the web ecosystem. The online advertising ecosystem nowadays forces publishers to integrate ads from these third-party domains. On the one hand, this raises several privacy and security concerns that are actively studied in recent years. On the other hand, given the ability of today's browsers to load dynamic web pages with complex animations and Javascript, online advertising has also transformed and can have a significant impact on webpage performance. The performance cost of online ads is critical since it eventually impacts user satisfaction as well as their Internet bill and device energy consumption. In this paper, we apply an in-depth and first-of-a-kind performance evaluation of web ads. Unlike prior efforts that rely primarily on adblockers, we perform a fine-grained analysis on the web browser's page loading process to demystify the performance cost of web ads. We aim to characterize the cost by every component of an ad, so the publisher, ad syndicate, and advertiser can improve the ad's performance with detailed guidance. For this purpose, we develop an infrastructure, adPerf, for the Chrome browser that classifies page loading workloads into ad-related and main-content at the granularity of browser activities (such as Javascript and Layout). Our evaluations show that online advertising entails more than 15% of browser page loading workload and approximately 88% of that is spent on JavaScript. We also track the sources and delivery chain of web ads and analyze performance considering the origin of the ad contents. We observe that 2 of the well-known third-party ad domains contribute to 35% of the ads performance cost and surprisingly, top news websites implicitly include unknown third-party ads which in some cases build up to more than 37% of the ads performance cost

    Express: a web-based technology to support human and computational experimentation

    Get PDF
    Experimental cognitive psychology has been greatly assisted by the development of general computer-based experiment presentation packages. Typically, however, such packages provide little support for running participants on different computers. It is left to the experimenter to ensure that group sizes are balanced between conditions and to merge data gathered on different computers once the experiment is complete. Equivalent issues arise in the evaluation of parameterized computational models, where it is frequently necessary to test a model's behavior over a range of parameter values (which amount to between-subjects factors) and where such testing can be speeded up significantly by the use of multiple processors. This article describes Express, a Web-based technology for coordinating "clients" (human participants or computational models) and collating client data. The technology provides an experiment design editor, client coordination facilities (e.g., automated randomized assignment of clients to groups so that group sizes are balanced), general data collation and tabulation facilities, a range of basic statistical functions (which are constrained by the specified experimental design), and facilities to export data to standard statistical packages (such as SPSS). We report case studies demonstrating the utility of Express in both human and computational experiments. Express may be freely downloaded from the Express Web site (http://express.psyc.bbk.ac.uk/)

    Abmash: Mashing Up Legacy Web Applications by Automated Imitation of Human Actions

    Get PDF
    Many business web-based applications do not offer applications programming interfaces (APIs) to enable other applications to access their data and functions in a programmatic manner. This makes their composition difficult (for instance to synchronize data between two applications). To address this challenge, this paper presents Abmash, an approach to facilitate the integration of such legacy web applications by automatically imitating human interactions with them. By automatically interacting with the graphical user interface (GUI) of web applications, the system supports all forms of integrations including bi-directional interactions and is able to interact with AJAX-based applications. Furthermore, the integration programs are easy to write since they deal with end-user, visual user-interface elements. The integration code is simple enough to be called a "mashup".Comment: Software: Practice and Experience (2013)

    Interactive Music and Synchronous Reactive Programming

    Full text link
    This paper presents Skini, a programming methodology and an execution environment for interactive structured music. With this system, the composer programs his scores in the HipHop.js synchronous reactive language. They are then executed, or played, in live concerts, in interaction with the audience. The system aims at helping composers to find a good balance between the determinism of the compositions and the nondeterminism of the interactions with the public. Each execution of a Skini score yields to a different but aesthetically consistent interpretation. This work raises many questions in the musical fields. How to combine composition and interaction? How to control the musical style when the audience influences what is to play next? What are the possible connections with generative music? These are important questions for the Skini system but they are out of the scope of this paper that focuses exclusively on the computer science aspects of the system. From that perspective, the main questions are how to program the scores and in which language? General purpose languages are inappropriate because their elementary constructs (i.e., variables, functions, loops, etc.) do not match the constructions needed to express music and musical constraints. We show that synchronous programming languages are a much better fit because they rely on temporal constructs that can be directly used to represent musical scores and because their malleability enables composers to experiment easily with artistic variations of their initial scores. The paper mostly focuses on scores programming. It exposes the process a composer should follow from his very first musical intuitions up to the generation of a musical artifact. The paper presents some excerpts of the programming of a classical music composition that it then precisely relates to an actual recording. Examples of techno music and jazz are also presented, with audio artifact, to demonstrate the versatility of the system. Finally, brief presentations of past live concerts are presented as an evidence of viability of the system

    Exploring the flexibility of scala implicits towards an extensible live environment

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201

    Systematic adaptation of dynamically generated source code via domain-specific examples

    Get PDF
    In modern web-based applications, an increasing amount of source code is generated dynamically at runtime. Web applications commonly execute dynamically generated code (DGC) emitted by third-party, black-box generators, run at remote sites. Web developers often need to adapt DGC before it can be executed: embedded HTML can be vulnerable to cross-site scripting attacks; an API may be incompatible with some browsers; and the program\u27s state created by DGC may not be persisting. Lacking any systematic approaches for adapting DGC, web developers resort to ad-hoc techniques that are unsafe and error-prone. This study presents an approach for adapting DGC systematically that follows the program-transformation-byexample paradigm. The proposed approach provides predefined, domain-specific before/after examples that capture the variability of commonly used adaptations. By approving or rejecting these examples, web developers determine the required adaptation transformations, which are encoded in an adaptation script operating on the generated code\u27s abstract syntax tree. The proposed approach is a suite of practical JavaScript program adaptations and their corresponding before/after examples. The authors have successfully applied the approach to real web applications to adapt third-party generated JavaScript code for security, browser compatibility, and persistence
    • …
    corecore