326 research outputs found

    The impact of agricultural activities on water quality: a case for collaborative catchment-scale management using integrated wireless sensor networks

    No full text
    The challenge of improving water quality is a growing global concern, typified by the European Commission Water Framework Directive and the United States Clean Water Act. The main drivers of poor water quality are economics, poor water management, agricultural practices and urban development. This paper reviews the extensive role of non-point sources, in particular the outdated agricultural practices, with respect to nutrient and contaminant contributions. Water quality monitoring (WQM) is currently undertaken through a number of data acquisition methods from grab sampling to satellite based remote sensing of water bodies. Based on the surveyed sampling methods and their numerous limitations, it is proposed that wireless sensor networks (WSNs), despite their own limitations, are still very attractive and effective for real-time spatio-temporal data collection for WQM applications. WSNs have been employed for WQM of surface and ground water and catchments, and have been fundamental in advancing the knowledge of contaminants trends through their high resolution observations. However, these applications have yet to explore the implementation and impact of this technology for management and control decisions, to minimize and prevent individual stakeholder’s contributions, in an autonomous and dynamic manner. Here, the potential of WSN-controlled agricultural activities and different environmental compartments for integrated water quality management is presented and limitations of WSN in agriculture and WQM are identified. Finally, a case for collaborative networks at catchment scale is proposed for enabling cooperation among individually networked activities/stakeholders (farming activities, water bodies) for integrated water quality monitoring, control and management

    Drones and Geographical Information Technologies in Agroecology and Organic Farming

    Get PDF
    Although organic farming and agroecology are normally not associated with the use of new technologies, it’s rapid growth, new technologies are being adopted to mitigate environmental impacts of intensive production implemented with external material and energy inputs. GPS, satellite images, GIS, drones, help conventional farming in precision supply of water, pesticides, fertilizers. Prescription maps define the right place and moment for interventions of machinery fleets. Yield goal remains the key objective, integrating a more efficient use or resources toward an economic-environmental sustainability. Technological smart farming allows extractive agriculture entering the sustainability era. Societies that practice agroecology through the development of human-environmental co-evolutionary systems represent a solid model of sustainability. These systems are characterized by high-quality agroecosystems and landscapes, social inclusion, and viable economies. This book explores the challenges posed by the new geographic information technologies in agroecology and organic farming. It discusses the differences among technology-laden conventional farming systems and the role of technologies in strengthening the potential of agroecology. The first part reviews the new tools offered by geographic information technologies to farmers and people. The second part provides case studies of most promising application of technologies in organic farming and agroecology: the diffusion of hyperspectral imagery, the role of positioning systems, the integration of drones with satellite imagery. The third part of the book, explores the role of agroecology using a multiscale approach from the farm to the landscape level. This section explores the potential of Geodesign in promoting alliances between farmers and people, and strengthening food networks, whether through proximity urban farming or asserting land rights in remote areas in the spirit of agroecological transition. The Open Access version of this book, available at www.taylorfrancis.com, has been made available under a Creative Commons 4.0 license

    Leveraging Crowdsourced Navigation Data In Roadway Pluvial Flash Flood Prediction

    Get PDF
    This dissertation develops and tests a new data-driven framework for short-term roadway pluvial flash flood (PFF) risk estimation at the scale of road segments using crowdsourced navigation data and a simplified physics-based PFF model. Pluvial flash flooding (PFF) is defined as localized floods caused by an overwhelmed natural or engineered drainage system. This study develops a data curation and computational framework for data collection, preprocessing, and modeling to estimate the risk of PFF at road-segment scales. A hybrid approach is also developed that couples a statistical model and a simplified physics-based simulation model in a machine learning (ML) model to rapidly predict the risk of roadway PFF using Waze alerts in real-time

    IoT Applications Computing

    Get PDF
    The evolution of emerging and innovative technologies based on Industry 4.0 concepts are transforming society and industry into a fully digitized and networked globe. Sensing, communications, and computing embedded with ambient intelligence are at the heart of the Internet of Things (IoT), the Industrial Internet of Things (IIoT), and Industry 4.0 technologies with expanding applications in manufacturing, transportation, health, building automation, agriculture, and the environment. It is expected that the emerging technology clusters of ambient intelligence computing will not only transform modern industry but also advance societal health and wellness, as well as and make the environment more sustainable. This book uses an interdisciplinary approach to explain the complex issue of scientific and technological innovations largely based on intelligent computing

    Application of integrated models to assess the impacts of floodplain connectivity on ecosystem services: a case study at Tempsford, UK

    Get PDF
    Floodplains in the United Kingdom have evolved from natural landscapes to artificially modified ecosystems through managing lateral and vertical floodplain connectivity leading to synergy or trade-offs in ecosystem service delivery. Research methods have been limited in understanding the processes by which ecosystem service values are formed and the data required to support ecosystem service assessment. Developing a methodology while complex and challenging is necessary in order to take the ecosystem approach forward to support decision making for policy makers, planners and stakeholders. The aim of this research was to develop a method to assess the delivery of ecosystem services in response to changes in floodplain connectivity and evaluate the performance. A case study floodplain was selected at Tempsford, downstream of the River Ivel in Bedfordshire, United Kingdom as an example for opportunities to deliver multiple ecosystem services. A sequential integrated modelling system was applied utilising a linked ISIS 1D-2D hydrodynamic model and WaSim, a 1D soil water balance model to simulate changes in floodplain connectivity and generate model data to improve estimates of ecosystem services indicators. A non- monetary multi-criteria analysis methodology was applied to further develop indicators for ecosystem services assessment and to assess the impacts of the model scenarios on ecosystem services delivery. The integration of the WaSim model was unsuccessful as the model performed poorly in the calibration and validation process and was not fit for its intended purpose. It was deduced that potential groundwater seepage in the regional aquifer occurs outside of the field study site, which cannot be modelled in WaSim. To demonstrate the impact of lateral connectivity controls on the water table position, an empirical method was developed using the mean observed water table position to represent a ‘no drainage system’ vertical connectivity scenario. The results showed that in low frequency/high magnitude flood events, increasing the lateral connectivity by lowering embankments provides synergy and benefits to flood alleviation, water supply and freshwater fish habitat and trade-offs and disbenefits to flood damage, agricultural productivity, terrestrial habitat and recreation. In high frequency/low magnitude flood events, decreasing the lateral connectivity by raising embankments still provides the same synergy and trade-offs yet lower benefits and disbenefits. Marginally decreasing the lateral connectivity creates a higher level of benefits and a lower level of disbenefits to promote multi-functional land use in the floodplain. Managing the control of floodplain connectivity needs to be carefully planned to enable multifunctional land use in a floodplain

    Proposal of architecture for IoT solution for monitoring and management of plantations

    Get PDF
    The world population growth is increasing the demand for food production. Furthermore, the reduction of the workforce in rural areas and the increase in production costs are challenges for food production nowadays. Smart farming is a farm management concept that may use Internet of Things (IoT) to overcome the current challenges of food production This work presents a systematic review of the existing literature on smart farming with IoT. The systematic review reveals an evolution in the way data are processed by IoT solutions in recent years. Traditional approaches mostly used data in a reactive manner. In contrast, recent approaches allowed the use of data to prevent crop problems and to improve the accuracy of crop diagnosis. Based on the finds of the systematic review, this work proposes an architecture of an IoT solution that enables monitoring and management of crops in real time. The proposed architecture allows the usage of big data and machine learning to process the collected data. A prototype is implemented to validate the operation of the proposed architecture and a security risk assessment of the implemented prototype is carried out. The implemented prototype successfully validates the proposed architecture. The architecture presented in this work allows the implementation of IoT solutions in different scenarios of farming, such as indoor and outdoor

    Sensors Application in Agriculture

    Get PDF
    Novel technologies are playing an important role in the development of crop and livestock farming and have the potential to be the key drivers of sustainable intensification of agricultural systems. In particular, new sensors are now available with reduced dimensions, reduced costs, and increased performances, which can be implemented and integrated in production systems, providing more data and eventually an increase in information. It is of great importance to support the digital transformation, precision agriculture, and smart farming, and to eventually allow a revolution in the way food is produced. In order to exploit these results, authoritative studies from the research world are still needed to support the development and implementation of new solutions and best practices. This Special Issue is aimed at bringing together recent developments related to novel sensors and their proved or potential applications in agriculture
    • 

    corecore