707 research outputs found

    Ontologies for Bioinformatics

    Get PDF
    The past twenty years have witnessed an explosion of biological data in diverse database formats governed by heterogeneous infrastructures. Not only are semantics (attribute terms) different in meaning across databases, but their organization varies widely. Ontologies are a concept imported from computing science to describe different conceptual frameworks that guide the collection, organization and publication of biological data. An ontology is similar to a paradigm but has very strict implications for formatting and meaning in a computational context. The use of ontologies is a means of communicating and resolving semantic and organizational differences between biological databases in order to enhance their integration. The purpose of interoperability (or sharing between divergent storage and semantic protocols) is to allow scientists from around the world to share and communicate with each other. This paper describes the rapid accumulation of biological data, its various organizational structures, and the role that ontologies play in interoperability

    Internet of Things Strategic Research Roadmap

    Get PDF
    Internet of Things (IoT) is an integrated part of Future Internet including existing and evolving Internet and network developments and could be conceptually defined as a dynamic global network infrastructure with self configuring capabilities based on standard and interoperable communication protocols where physical and virtual ā€œthingsā€ have identities, physical attributes, and virtual personalities, use intelligent interfaces, and are seamlessly integrated into the information network

    Doctor of Philosophy

    Get PDF
    dissertationBiomedical data are a rich source of information and knowledge. Not only are they useful for direct patient care, but they may also offer answers to important population-based questions. Creating an environment where advanced analytics can be performed against biomedical data is nontrivial, however. Biomedical data are currently scattered across multiple systems with heterogeneous data, and integrating these data is a bigger task than humans can realistically do by hand; therefore, automatic biomedical data integration is highly desirable but has never been fully achieved. This dissertation introduces new algorithms that were devised to support automatic and semiautomatic integration of heterogeneous biomedical data. The new algorithms incorporate both data mining and biomedical informatics techniques to create "concept bags" that are used to compute similarity between data elements in the same way that "word bags" are compared in data mining. Concept bags are composed of controlled medical vocabulary concept codes that are extracted from text using named-entity recognition software. To test the new algorithm, three biomedical text similarity use cases were examined: automatically aligning data elements between heterogeneous data sets, determining degrees of similarity between medical terms using a published benchmark, and determining similarity between ICU discharge summaries. The method is highly configurable and 5 different versions were tested. The concept bag method performed particularly well aligning data elements and outperformed the compared algorithms by iv more than 5%. Another configuration that included hierarchical semantics performed particularly well at matching medical terms, meeting or exceeding 30 of 31 other published results using the same benchmark. Results for the third scenario of computing ICU discharge summary similarity were less successful. Correlations between multiple methods were low, including between terminologists. The concept bag algorithms performed consistently and comparatively well and appear to be viable options for multiple scenarios. New applications of the method and ideas for improving the algorithm are being discussed for future work, including several performance enhancements, configuration-based enhancements, and concept vector weighting using the TF-IDF formulas

    Towards Interoperable Research Infrastructures for Environmental and Earth Sciences

    Get PDF
    This open access book summarises the latest developments on data management in the EU H2020 ENVRIplus project, which brought together more than 20 environmental and Earth science research infrastructures into a single community. It provides readers with a systematic overview of the common challenges faced by research infrastructures and how a ā€˜reference model guidedā€™ engineering approach can be used to achieve greater interoperability among such infrastructures in the environmental and earth sciences. The 20 contributions in this book are structured in 5 parts on the design, development, deployment, operation and use of research infrastructures. Part one provides an overview of the state of the art of research infrastructure and relevant e-Infrastructure technologies, part two discusses the reference model guided engineering approach, the third part presents the software and tools developed for common data management challenges, the fourth part demonstrates the software via several use cases, and the last part discusses the sustainability and future directions

    Complex adaptive systems based data integration : theory and applications

    Get PDF
    Data Definition Languages (DDLs) have been created and used to represent data in programming languages and in database dictionaries. This representation includes descriptions in the form of data fields and relations in the form of a hierarchy, with the common exception of relational databases where relations are flat. Network computing created an environment that enables relatively easy and inexpensive exchange of data. What followed was the creation of new DDLs claiming better support for automatic data integration. It is uncertain from the literature if any real progress has been made toward achieving an ideal state or limit condition of automatic data integration. This research asserts that difficulties in accomplishing integration are indicative of socio-cultural systems in general and are caused by some measurable attributes common in DDLs. This researchā€™s main contributions are: (1) a theory of data integration requirements to fully support automatic data integration from autonomous heterogeneous data sources; (2) the identification of measurable related abstract attributes (Variety, Tension, and Entropy); (3) the development of tools to measure them. The research uses a multi-theoretic lens to define and articulate these attributes and their measurements. The proposed theory is founded on the Law of Requisite Variety, Information Theory, Complex Adaptive Systems (CAS) theory, Sowaā€™s Meaning Preservation framework and Zipf distributions of words and meanings. Using the theory, the attributes, and their measures, this research proposes a framework for objectively evaluating the suitability of any data definition language with respect to degrees of automatic data integration. This research uses thirteen data structures constructed with various DDLs from the 1960\u27s to date. No DDL examined (and therefore no DDL similar to those examined) is designed to satisfy the law of requisite variety. No DDL examined is designed to support CAS evolutionary processes that could result in fully automated integration of heterogeneous data sources. There is no significant difference in measures of Variety, Tension, and Entropy among DDLs investigated in this research. A direction to overcome the common limitations discovered in this research is suggested and tested by proposing GlossoMote, a theoretical mathematically sound description language that satisfies the data integration theory requirements. The DDL, named GlossoMote, is not merely a new syntax, it is a drastic departure from existing DDL constructs. The feasibility of the approach is demonstrated with a small scale experiment and evaluated using the proposed assessment framework and other means. The promising results require additional research to evaluate GlossoMoteā€™s approach commercial use potential

    Computational methods for data discovery, harmonization and integration:Using lexical and semantic matching with an application to biobanking phenotypes

    Get PDF
    Grote gegevensverzamelingen rondom menselijke proefpersonen/patiĆ«nten, zoals biobanken en patiĆ«nten registraties, zijn onmisbaar geworden voor onderzoek naar ziekte en gezondheid, en de vertaling van dit onderzoek naar zorg en preventie. De afgelopen jaren heeft dit soort onderzoek een enorme vlucht genomen, van beperkte studies in context van specifieke ziektebeelden tot nu grootschalig bestuderen van ziekten en het complexe samenspel van genetische en omgevingsfactoren. Succesvolle uitvoering van dit soort studies vereist enorme datasets. Doordat de data in biobanken typisch is verzameld voor verschillende doelen, en daardoor dus ook qua structuur en samenstelling verschillen, is data integratie een moeizaam en tijdsintensief proces waarbij vele methodologische, technische en ethisch/juridische horden moeten worden genomen. Dit proefschrift beschrijft het onderzoek naar de uitdagingen rondom het ā€˜poolenā€™ van phenotypische gegevens over meerdere biobanken. In het bijzonder hebben we ons bezig gehouden met de vraagstukken rondom (i) het effectief in kaart brengen en vindbaar maken van relevante datasets en de bijbehorende data items, (ii) het kunnen vaststellen welke van de data items vanuit elke bron dataset potentieel gecombineerd kunnen worden als basis voor analyseen (iii) op welke wijze deze data efficiĆ«nt kunnen worden getransformeerd naar een gestandaardiseerde dataset om daadwerkelijk geĆÆntegreerde analyse mogelijk te maken. Het resultaat is een collectie nieuwe computationele methoden, inclusief bruikbare software, waarmee (semi)automatisch en efficiĆ«nt verschillen in data verzameling en beschrijving kunnen worden overbrugd zodat onderzoekers veel sneller dan hiervoor data kunnen vinden, harmoniseren en integreren

    Investigating the attainment of optimum data quality for EHR Big Data: proposing a new methodological approach

    Get PDF
    The value derivable from the use of data is continuously increasing since some years. Both commercial and non-commercial organisations have realised the immense benefits that might be derived if all data at their disposal could be analysed and form the basis of decision taking. The technological tools required to produce, capture, store, transmit and analyse huge amounts of data form the background to the development of the phenomenon of Big Data. With Big Data, the aim is to be able to generate value from huge amounts of data, often in non-structured format and produced extremely frequently. However, the potential value derivable depends on general level of governance of data, more precisely on the quality of the data. The field of data quality is well researched for traditional data uses but is still in its infancy for the Big Data context. This dissertation focused on investigating effective methods to enhance data quality for Big Data. The principal deliverable of this research is in the form of a methodological approach which can be used to optimize the level of data quality in the Big Data context. Since data quality is contextual, (that is a non-generalizable field), this research study focuses on applying the methodological approach in one use case, in terms of the Electronic Health Records (EHR). The first main contribution to knowledge of this study systematically investigates which data quality dimensions (DQDs) are most important for EHR Big Data. The two most important dimensions ascertained by the research methods applied in this study are accuracy and completeness. These are two well-known dimensions, and this study confirms that they are also very important for EHR Big Data. The second important contribution to knowledge is an investigation into whether Artificial Intelligence with a special focus upon machine learning could be used in improving the detection of dirty data, focusing on the two data quality dimensions of accuracy and completeness. Regression and clustering algorithms proved to be more adequate for accuracy and completeness related issues respectively, based on the experiments carried out. However, the limits of implementing and using machine learning algorithms for detecting data quality issues for Big Data were also revealed and discussed in this research study. It can safely be deduced from the knowledge derived from this part of the research study that use of machine learning for enhancing data quality issues detection is a promising area but not yet a panacea which automates this entire process. The third important contribution is a proposed guideline to undertake data repairs most efficiently for Big Data; this involved surveying and comparing existing data cleansing algorithms against a prototype developed for data reparation. Weaknesses of existing algorithms are highlighted and are considered as areas of practice which efficient data reparation algorithms must focus upon. Those three important contributions form the nucleus for a new data quality methodological approach which could be used to optimize Big Data quality, as applied in the context of EHR. Some of the activities and techniques discussed through the proposed methodological approach can be transposed to other industries and use cases to a large extent. The proposed data quality methodological approach can be used by practitioners of Big Data Quality who follow a data-driven strategy. As opposed to existing Big Data quality frameworks, the proposed data quality methodological approach has the advantage of being more precise and specific. It gives clear and proven methods to undertake the main identified stages of a Big Data quality lifecycle and therefore can be applied by practitioners in the area. This research study provides some promising results and deliverables. It also paves the way for further research in the area. Technical and technological changes in Big Data is rapidly evolving and future research should be focusing on new representations of Big Data, the real-time streaming aspect, and replicating same research methods used in this current research study but on new technologies to validate current results

    A Learning Health System for Radiation Oncology

    Get PDF
    The proposed research aims to address the challenges faced by clinical data science researchers in radiation oncology accessing, integrating, and analyzing heterogeneous data from various sources. The research presents a scalable intelligent infrastructure, called the Health Information Gateway and Exchange (HINGE), which captures and structures data from multiple sources into a knowledge base with semantically interlinked entities. This infrastructure enables researchers to mine novel associations and gather relevant knowledge for personalized clinical outcomes. The dissertation discusses the design framework and implementation of HINGE, which abstracts structured data from treatment planning systems, treatment management systems, and electronic health records. It utilizes disease-specific smart templates for capturing clinical information in a discrete manner. HINGE performs data extraction, aggregation, and quality and outcome assessment functions automatically, connecting seamlessly with local IT/medical infrastructure. Furthermore, the research presents a knowledge graph-based approach to map radiotherapy data to an ontology-based data repository using FAIR (Findable, Accessible, Interoperable, Reusable) concepts. This approach ensures that the data is easily discoverable and accessible for clinical decision support systems. The dissertation explores the ETL (Extract, Transform, Load) process, data model frameworks, ontologies, and provides a real-world clinical use case for this data mapping. To improve the efficiency of retrieving information from large clinical datasets, a search engine based on ontology-based keyword searching and synonym-based term matching tool was developed. The hierarchical nature of ontologies is leveraged to retrieve patient records based on parent and children classes. Additionally, patient similarity analysis is conducted using vector embedding models (Word2Vec, Doc2Vec, GloVe, and FastText) to identify similar patients based on text corpus creation methods. Results from the analysis using these models are presented. The implementation of a learning health system for predicting radiation pneumonitis following stereotactic body radiotherapy is also discussed. 3D convolutional neural networks (CNNs) are utilized with radiographic and dosimetric datasets to predict the likelihood of radiation pneumonitis. DenseNet-121 and ResNet-50 models are employed for this study, along with integrated gradient techniques to identify salient regions within the input 3D image dataset. The predictive performance of the 3D CNN models is evaluated based on clinical outcomes. Overall, the proposed Learning Health System provides a comprehensive solution for capturing, integrating, and analyzing heterogeneous data in a knowledge base. It offers researchers the ability to extract valuable insights and associations from diverse sources, ultimately leading to improved clinical outcomes. This work can serve as a model for implementing LHS in other medical specialties, advancing personalized and data-driven medicine
    • ā€¦
    corecore