1,803 research outputs found

    Generative Compression

    Full text link
    Traditional image and video compression algorithms rely on hand-crafted encoder/decoder pairs (codecs) that lack adaptability and are agnostic to the data being compressed. Here we describe the concept of generative compression, the compression of data using generative models, and suggest that it is a direction worth pursuing to produce more accurate and visually pleasing reconstructions at much deeper compression levels for both image and video data. We also demonstrate that generative compression is orders-of-magnitude more resilient to bit error rates (e.g. from noisy wireless channels) than traditional variable-length coding schemes

    Providing Dynamic TXOP for QoS Support of Video Transmission in IEEE 802.11e WLANs

    Get PDF
    The IEEE 802.11e standard introduced by IEEE 802.11 Task Group E (TGe) enhances the Quality of Service (QoS) by means of HCF Controlled Channel Access (HCCA). The scheduler of HCCA allocates Transmission Opportunities (TXOPs) to QoS-enabled Station (QSTA) based on their TS Specifications (TSPECs) negotiated at the traffic setup time so that it is only efficient for Constant Bit Rate (CBR) applications. However, Variable Bit Rate (VBR) traffics are not efficiently supported as they exhibit nondeterministic profile during the time. In this paper, we present a dynamic TXOP assignment Scheduling Algorithm for supporting the video traffics transmission over IEEE 802.11e wireless networks. This algorithm uses a piggybacked information about the size of the subsequent video frames of the uplink traffic to assist the Hybrid Coordinator accurately assign the TXOP according to the fast changes in the VBR profile. The proposed scheduling algorithm has been evaluated using simulation with different variability level video streams. The simulation results show that the proposed algorithm reduces the delay experienced by VBR traffic streams comparable to HCCA scheduler due to the accurate assignment of the TXOP which preserve the channel time for transmission.Comment: arXiv admin note: substantial text overlap with arXiv:1602.0369

    3D video coding and transmission

    Get PDF
    The capture, transmission, and display of 3D content has gained a lot of attention in the last few years. 3D multimedia content is no longer con fined to cinema theatres but is being transmitted using stereoscopic video over satellite, shared on Blu-RayTMdisks, or sent over Internet technologies. Stereoscopic displays are needed at the receiving end and the viewer needs to wear special glasses to present the two versions of the video to the human vision system that then generates the 3D illusion. To be more e ffective and improve the immersive experience, more views are acquired from a larger number of cameras and presented on di fferent displays, such as autostereoscopic and light field displays. These multiple views, combined with depth data, also allow enhanced user experiences and new forms of interaction with the 3D content from virtual viewpoints. This type of audiovisual information is represented by a huge amount of data that needs to be compressed and transmitted over bandwidth-limited channels. Part of the COST Action IC1105 \3D Content Creation, Coding and Transmission over Future Media Networks" (3DConTourNet) focuses on this research challenge.peer-reviewe

    Multicast Mobility in Mobile IP Version 6 (MIPv6) : Problem Statement and Brief Survey

    Get PDF
    Publisher PD
    corecore