1,287 research outputs found

    Lexicographic Methods for Fuzzy Linear Programming

    Get PDF
    Fuzzy Linear Programming (FLP) has addressed the increasing complexity of real-world decision-making problems that arise in uncertain and ever-changing environments since its introduction in the 1970s. Built upon the Fuzzy Sets theory and classical Linear Programming (LP) theory, FLP encompasses an extensive area of theoretical research and algorithmic development. Unlike classical LP, there is not a unique model for the FLP problem, since fuzziness can appear in the model components in different ways. Hence, despite fifty years of research, new formulations of FLP problems and solution methods are still being proposed. Among the existing formulations, those using fuzzy numbers (FNs) as parameters and/or decision variables for handling inexactness and vagueness in data have experienced a remarkable development in recent years. Here, a long-standing issue has been how to deal with FN-valued objective functions and with constraints whose left- and right-hand sides are FNs. The main objective of this paper is to present an updated review of advances in this particular area. Consequently, the paper briefly examines well-known models and methods for FLP, and expands on methods for fuzzy single- and multi-objective LP that use lexicographic criteria for ranking FNs. A lexicographic approach to the fuzzy linear assignment (FLA) problem is discussed in detail due to the theoretical and practical relevance. For this case, computer codes are provided that can be used to reproduce results presented in the paper and for practical applications. The paper demonstrates that FLP that is focused on lexicographic methods is an active area with promising research lines and practical implications.Spanish Ministry of Economy and CompetitivenessEuropean Union (EU) TIN2017-86647-

    Fuzzy linear programming problems : models and solutions

    No full text
    We investigate various types of fuzzy linear programming problems based on models and solution methods. First, we review fuzzy linear programming problems with fuzzy decision variables and fuzzy linear programming problems with fuzzy parameters (fuzzy numbers in the definition of the objective function or constraints) along with the associated duality results. Then, we review the fully fuzzy linear programming problems with all variables and parameters being allowed to be fuzzy. Most methods used for solving such problems are based on ranking functions, alpha-cuts, using duality results or penalty functions. In these methods, authors deal with crisp formulations of the fuzzy problems. Recently, some heuristic algorithms have also been proposed. In these methods, some authors solve the fuzzy problem directly, while others solve the crisp problems approximately

    Robust optimization in data envelopment analysis: extended theory and applications.

    Get PDF
    Performance evaluation of decision-making units (DMUs) via the data envelopment analysis (DEA) is confronted with multi-conflicting objectives, complex alternatives and significant uncertainties. Visualizing the risk of uncertainties in the data used in the evaluation process is crucial to understanding the need for cutting edge solution techniques to organizational decisions. A greater management concern is to have techniques and practical models that can evaluate their operations and make decisions that are not only optimal but also consistent with the changing environment. Motivated by the myriad need to mitigate the risk of uncertainties in performance evaluations, this thesis focuses on finding robust and flexible evaluation strategies to the ranking and classification of DMUs. It studies performance measurement with the DEA tool and addresses the uncertainties in data via the robust optimization technique. The thesis develops new models in robust data envelopment analysis with applications to management science, which are pursued in four research thrust. In the first thrust, a robust counterpart optimization with nonnegative decision variables is proposed which is then used to formulate new budget of uncertainty-based robust DEA models. The proposed model is shown to save the computational cost for robust optimization solutions to operations research problems involving only positive decision variables. The second research thrust studies the duality relations of models within the worst-case and best-case approach in the input \u2013 output orientation framework. A key contribution is the design of a classification scheme that utilizes the conservativeness and the risk preference of the decision maker. In the third thrust, a new robust DEA model based on ellipsoidal uncertainty sets is proposed which is further extended to the additive model and compared with imprecise additive models. The final thrust study the modelling techniques including goal programming, robust optimization and data envelopment to a transportation problem where the concern is on the efficiency of the transport network, uncertainties in the demand and supply of goods and a compromising solution to multiple conflicting objectives of the decision maker. Several numerical examples and real-world applications are made to explore and demonstrate the applicability of the developed models and their essence to management decisions. Applications such as the robust evaluation of banking efficiency in Europe and in particular Germany and Italy are made. Considering the proposed models and their applications, efficiency analysis explored in this research will correspond to the practical framework of industrial and organizational decision making and will further advance the course of robust management decisions

    Robust optimization in data envelopment analysis: extended theory and applications.

    Get PDF
    Performance evaluation of decision-making units (DMUs) via the data envelopment analysis (DEA) is confronted with multi-conflicting objectives, complex alternatives and significant uncertainties. Visualizing the risk of uncertainties in the data used in the evaluation process is crucial to understanding the need for cutting edge solution techniques to organizational decisions. A greater management concern is to have techniques and practical models that can evaluate their operations and make decisions that are not only optimal but also consistent with the changing environment. Motivated by the myriad need to mitigate the risk of uncertainties in performance evaluations, this thesis focuses on finding robust and flexible evaluation strategies to the ranking and classification of DMUs. It studies performance measurement with the DEA tool and addresses the uncertainties in data via the robust optimization technique. The thesis develops new models in robust data envelopment analysis with applications to management science, which are pursued in four research thrust. In the first thrust, a robust counterpart optimization with nonnegative decision variables is proposed which is then used to formulate new budget of uncertainty-based robust DEA models. The proposed model is shown to save the computational cost for robust optimization solutions to operations research problems involving only positive decision variables. The second research thrust studies the duality relations of models within the worst-case and best-case approach in the input – output orientation framework. A key contribution is the design of a classification scheme that utilizes the conservativeness and the risk preference of the decision maker. In the third thrust, a new robust DEA model based on ellipsoidal uncertainty sets is proposed which is further extended to the additive model and compared with imprecise additive models. The final thrust study the modelling techniques including goal programming, robust optimization and data envelopment to a transportation problem where the concern is on the efficiency of the transport network, uncertainties in the demand and supply of goods and a compromising solution to multiple conflicting objectives of the decision maker. Several numerical examples and real-world applications are made to explore and demonstrate the applicability of the developed models and their essence to management decisions. Applications such as the robust evaluation of banking efficiency in Europe and in particular Germany and Italy are made. Considering the proposed models and their applications, efficiency analysis explored in this research will correspond to the practical framework of industrial and organizational decision making and will further advance the course of robust management decisions

    Automatic road network extraction in suburban areas from aerial images

    Get PDF
    [no abstract

    Game Theory Relaunched

    Get PDF
    The game is on. Do you know how to play? Game theory sets out to explore what can be said about making decisions which go beyond accepting the rules of a game. Since 1942, a well elaborated mathematical apparatus has been developed to do so; but there is more. During the last three decades game theoretic reasoning has popped up in many other fields as well - from engineering to biology and psychology. New simulation tools and network analysis have made game theory omnipresent these days. This book collects recent research papers in game theory, which come from diverse scientific communities all across the world; they combine many different fields like economics, politics, history, engineering, mathematics, physics, and psychology. All of them have as a common denominator some method of game theory. Enjoy

    MATLAB

    Get PDF
    This excellent book represents the final part of three-volumes regarding MATLAB-based applications in almost every branch of science. The book consists of 19 excellent, insightful articles and the readers will find the results very useful to their work. In particular, the book consists of three parts, the first one is devoted to mathematical methods in the applied sciences by using MATLAB, the second is devoted to MATLAB applications of general interest and the third one discusses MATLAB for educational purposes. This collection of high quality articles, refers to a large range of professional fields and can be used for science as well as for various educational purposes

    Computational intelligence techniques for HVAC systems: a review

    Get PDF
    Buildings are responsible for 40% of global energy use and contribute towards 30% of the total CO2 emissions. The drive to reduce energy use and associated greenhouse gas emissions from buildings has acted as a catalyst in the development of advanced computational methods for energy efficient design, management and control of buildings and systems. Heating, ventilation and air conditioning (HVAC) systems are the major source of energy consumption in buildings and an ideal candidate for substantial reductions in energy demand. Significant advances have been made in the past decades on the application of computational intelligence (CI) techniques for HVAC design, control, management, optimization, and fault detection and diagnosis. This article presents a comprehensive and critical review on the theory and applications of CI techniques for prediction, optimization, control and diagnosis of HVAC systems.The analysis of trends reveals the minimization of energy consumption was the key optimization objective in the reviewed research, closely followed by the optimization of thermal comfort, indoor air quality and occupant preferences. Hardcoded Matlab program was the most widely used simulation tool, followed by TRNSYS, EnergyPlus, DOE–2, HVACSim+ and ESP–r. Metaheuristic algorithms were the preferred CI method for solving HVAC related problems and in particular genetic algorithms were applied in most of the studies. Despite the low number of studies focussing on MAS, as compared to the other CI techniques, interest in the technique is increasing due to their ability of dividing and conquering an HVAC optimization problem with enhanced overall performance. The paper also identifies prospective future advancements and research directions
    • …
    corecore