2,249 research outputs found

    Dataflow computers: a tutorial and survey

    Get PDF
    Journal ArticleThe demand for very high performance computer has encouraged some researchers in the computer science field to consider alternatives to the conventional notions of program and computer organization. The dataflow computer is one attempt to form a new collection of consistent systems ideas to improve both computer performance and to alleviate the software design problems induced by the construction of highly concurrent programs

    Unattended network operations technology assessment study. Technical support for defining advanced satellite systems concepts

    Get PDF
    The results are summarized of an unattended network operations technology assessment study for the Space Exploration Initiative (SEI). The scope of the work included: (1) identified possible enhancements due to the proposed Mars communications network; (2) identified network operations on Mars; (3) performed a technology assessment of possible supporting technologies based on current and future approaches to network operations; and (4) developed a plan for the testing and development of these technologies. The most important results obtained are as follows: (1) addition of a third Mars Relay Satellite (MRS) and MRS cross link capabilities will enhance the network's fault tolerance capabilities through improved connectivity; (2) network functions can be divided into the six basic ISO network functional groups; (3) distributed artificial intelligence technologies will augment more traditional network management technologies to form the technological infrastructure of a virtually unattended network; and (4) a great effort is required to bring the current network technology levels for manned space communications up to the level needed for an automated fault tolerance Mars communications network

    Recommender Systems Based on Deep Learning Techniques

    Get PDF
    Tese de mestrado em Ciência de Dados, Universidade de Lisboa, Faculdade de Ciências, 2020O atual aumento do número de opções disponíveis aquando a tomada de uma decisão, faz com que vários indivíduos se sintam sobrecarregados, o que origina experiências de utilização frustrantes e demoradas. Sistemas de Recomendação são ferramentas fundamentais para a mitigação deste acontecimento, ao remover certas alternativas que provavelmente serão irrelevantes para cada indivíduo. Desenvolver estes sistemas apresenta vários desafios, tornando-se assim uma tarefa de difícil realização. Para tal, vários sistemas (frameworks) para facilitar estes desenvolvimentos foram propostos, ajudando assim a reduzir os custos de desenvolvimento, através da oferta de ferramentas reutilizáveis, tal como implementações de estratégias comuns e modelos populares. Contudo, ainda é difícil encontrar um sistema (framework) que também ofereça uma abstração completa na conversão de conjuntos de dados, suporte para abordagens baseadas em aprendizagem profunda, modelos extensíveis, e avaliações reproduzíveis. Este trabalho introduz o DRecPy, um novo sistema (framework) que oferece vários módulos para evitar trabalho de desenvolvimento repetitivo, mas também para auxiliar os praticantes nos desafios mencionados anteriormente. O DRecPy contém módulos para lidar com: tarefas de carregar e converter conjuntos de dados; divisão de conjuntos de dados para treino, validação e teste de modelos; amostragem de pontos de dados através de estratégias distintas; criação de sistemas de recomendação complexos e extensíveis, ao seguir uma estrutura de modelo definida mas flexível; juntamente com vários processos de avaliação que originam resultados determinísticos por padrão. Para avaliar este novo sistema (framework), a sua consistência é analisada através da comparação dos resultados produzidos, com os resultados publicados na literatura. Para mostrar que o DRecPy pode ser uma ferramenta valiosa para a comunidade de sistemas de recomendação, várias características são também avaliadas e comparadas com ferramentas existentes, tais como extensibilidade, reutilização e reprodutibilidade.The current increase in available options makes individuals feel overwhelmed whenever facing a decision, resulting in a frustrating and time-consuming user experience. Recommender systems are a fundamental tool to solve this issue, filtering out the options that are most likely to be irrelevant for each person. Developing these systems presents us with a vast number of challenges, making it a difficult task to accomplish. To this end, various frameworks to aid their development have been proposed, helping reducing development costs by offering reusable tools, as well as implementations of common strategies and popular models. However, it is still hard to find a framework that also provides full abstraction over data set conversion, support for deep learning-based approaches, extensible models, and reproducible evaluations. This work introduces DRecPy, a novel framework that not only provides several modules to avoid repetitive development work, but also to assist practitioners with the above challenges. DRecPy contains modules to deal with: data set import and conversion tasks; splitting data sets for model training, validation, and testing; sampling data points using distinct strategies; creating extensible and complex recommenders, by following a defined but flexible model structure; together with many evaluation procedures that provide deterministic results by default. To evaluate this new framework, its consistency is analyzed by comparing the results generated by DRecPy against the results published by others using the same algorithms. Also, to show that DRecPy can be a valuable tool for the recommender systems’ community, several framework characteristics are evaluated and compared against existing tools, such as extensibility, reusability, and reproducibility

    High throughput spatial convolution filters on FPGAs

    Get PDF
    Digital signal processing (DSP) on field- programmable gate arrays (FPGAs) has long been appealing because of the inherent parallelism in these computations that can be easily exploited to accelerate such algorithms. FPGAs have evolved significantly to further enhance the mapping of these algorithms, included additional hard blocks, such as the DSP blocks found in modern FPGAs. Although these DSP blocks can offer more efficient mapping of DSP computations, they are primarily designed for 1-D filter structures. We present a study on spatial convolutional filter implementations on FPGAs, optimizing around the structure of the DSP blocks to offer high throughput while maintaining the coefficient flexibility that other published architectures usually sacrifice. We show that it is possible to implement large filters for large 4K resolution image frames at frame rates of 30–60 FPS, while maintaining functional flexibility

    The State-of-the-Art and Prospects of Learning Factories

    Get PDF
    AbstractChangeability of manufacturing systems is an important enabler for offering large variety of competitive products to satisfy customers’ requirements. Learning factories, as teaching and research environments, can play a key role in developing new solutions for changeability, transferring them to the industry and using them in educating engineers. The results of a survey of existing learning factories and their characteristics are presented. Their use in research, teaching and industrial projects is analyzed. A novel scheme to classify those systems with regard to their design, products and their changeability characteristics is outlined. Conclusions about the future of learning factories are drawn

    Toward a flexible facial analysis framework in OpenISS for visual effects

    Get PDF
    Facial analysis, including tasks such as face detection, facial landmark detection, and facial expression recognition, is a significant research domain in computer vision for visual effects. It can be used in various domains such as facial feature mapping for movie animation, biometrics/face recognition for security systems, and driver fatigue monitoring for transportation safety assistance. Most applications involve basic face and landmark detection as preliminary analysis approaches before proceeding into further specialized processing applications. As technology develops, there are plenty of implementations and resources for each task available for researchers, but the key missing properties among them all are fexibility and usability. The integration of functionality components involves complex configurations for each connection joint which is typically problematic with poor reusability and adjustability. The lack of support for integrating different functionality components greatly impact the research effort and cost for individual researchers, which also leads us to the idea of providing a framework solution that can help regarding the issue once and for all. To address this problem, we propose a user-friendly and highly expandable facial analysis framework solution. It contains a core that supports fundamental services for the framework, and a facial analysis module composed of implementations for facial analysis tasks. We evaluate our framework solution and achieve our goals of instantiating the facial analysis specialized framework, which essentially perform tasks in face detection, facial landmark detection, and facial expression recognition. This framework solution as a whole, solves the industry problem of lacking an execution platform for integrated facial analysis implementations and fills the gap in visual effects industry
    corecore