2,626 research outputs found

    Methods for fast and reliable clustering

    Get PDF

    An exploration of methodologies to improve semi-supervised hierarchical clustering with knowledge-based constraints

    Get PDF
    Clustering algorithms with constraints (also known as semi-supervised clustering algorithms) have been introduced to the field of machine learning as a significant variant to the conventional unsupervised clustering learning algorithms. They have been demonstrated to achieve better performance due to integrating prior knowledge during the clustering process, that enables uncovering relevant useful information from the data being clustered. However, the research conducted within the context of developing semi-supervised hierarchical clustering techniques are still an open and active investigation area. Majority of current semi-supervised clustering algorithms are developed as partitional clustering (PC) methods and only few research efforts have been made on developing semi-supervised hierarchical clustering methods. The aim of this research is to enhance hierarchical clustering (HC) algorithms based on prior knowledge, by adopting novel methodologies. [Continues.

    The New Software Package for Dynamic Hierarchical Clustering for Circles Types of Shapes

    Get PDF
    In data mining, efforts have focused on finding methods for efficient and effective cluster analysis in large databases. Active themes of research focus on the scalability of clustering methods, the effectiveness of methods for clustering complex shapes and types of data, high-dimensional clustering techniques, and methods for clustering mixed numerical and categorical data in large databases. One of the most accuracy approach based on dynamic modeling of cluster similarity is called Chameleon. In this paper we present a modified hierarchical clustering algorithm that used the main idea of Chameleon and the effectiveness of suggested approach will be demonstrated by the experimental results

    An Unsupervised Cluster: Learning Water Customer Behavior Using Variation of Information on a Reconstructed Phase Space

    Get PDF
    The unsupervised clustering algorithm described in this dissertation addresses the need to divide a population of water utility customers into groups based on their similarities and differences, using only the measured flow data collected by water meters. After clustering, the groups represent customers with similar consumption behavior patterns and provide insight into ‘normal’ and ‘unusual’ customer behavior patterns. This research focuses upon individually metered water utility customers and includes both residential and commercial customer accounts serviced by utilities within North America. The contributions of this dissertation not only represent a novel academic work, but also solve a practical problem for the utility industry. This dissertation introduces a method of agglomerative clustering using information theoretic distance measures on Gaussian mixture models within a reconstructed phase space. The clustering method accommodates a utility’s limited human, financial, computational, and environmental resources. The proposed weighted variation of information distance measure for comparing Gaussian mixture models places emphasis upon those behaviors whose statistical distributions are more compact over those behaviors with large variation and contributes a novel addition to existing comparison options

    Learning the Structure of Continuous Markov Decision Processes

    Get PDF
    There is growing interest in artificial, intelligent agents which can operate autonomously for an extended period of time in complex environments and fulfill a variety of different tasks. Such agents will face different problems during their lifetime which may not be foreseeable at the time of their deployment. Thus, the capacity for lifelong learning of new behaviors is an essential prerequisite for this kind of agents as it enables them to deal with unforeseen situations. However, learning every complex behavior anew from scratch would be cumbersome for the agent. It is more plausible to consider behavior to be modular and let the agent acquire a set of reusable building blocks for behavior, the so-called skills. These skills might, once acquired, facilitate fast learning and adaptation of behavior to new situations. This work focuses on computational approaches for skill acquisition, namely which kind of skills shall be acquired and how to acquire them. The former is commonly denoted as skill discovery and the latter as skill learning . The main contribution of this thesis is a novel incremental skill acquisition approach which is suited for lifelong learning. In this approach, the agent learns incrementally a graph-based representation of a domain and exploits certain properties of this graph such as its bottlenecks for skill discovery. This thesis proposes a novel approach for learning a graph-based representation of continuous domains based on formalizing the problem as a probabilistic generative model. Furthermore, a new incremental agglomerative clustering approach for identifying bottlenecks of such graphs is presented. Thereupon, the thesis proposes a novel intrinsic motivation system which enables an agent to intelligently allocate time between skill discovery and skill learning in developmental settings, where the agent is not constrained by external tasks. The results of this thesis show that the resulting skill acquisition approach is suited for continuous domains and can deal with domain stochasticity and different explorative behavior of the agent. The acquired skills are reusable and versatile and can be used in multi-task and lifelong learning settings in high-dimensional problems

    SVM Classifier on K-means Clustering Algorithm with Normalization in Data Mining for Prediction

    Get PDF
    This work is belonging to K-means clustering algorithms classifier is used with this algorithm to classified data and Min Max normalization technique also used is to enhance the results of this work over simply K- Means algorithm. K-means algorithm is a clustering algorithm and basically used for discovering the cluster within a dataset. Here cancer dataset is used for this research work and dataset is classified in two categories – Cancer and Non-Cancer, after execution of the implemented algorithm with SVM and Normalization technique. The initial point selection effects on the results of the algorithm, both in the number of clusters found and their centroids. In this work enhance the k-means clustering algorithm methods are discussed. This technique helps to improve efficiency, accuracy, performance and computational time. Some enhanced variations improve the efficiency and accuracy of algorithm. The main of all methods is to decrees the number of iterations which will less computational time. K-means algorithm in clustering is most popular technique which is widely used technique in data mining. Various enhancements done on K-mean are collected, so by using these enhancements one can build a new proposed algorithm which will be more efficient, accurate and less time consuming than the previous work. More focus of this studies is to decrease the number of iterations which is less time consuming and second one is to gain more accuracy using normalization technique overall belonging to improve time and accuracy than previous studies
    • …
    corecore