43,258 research outputs found

    Time-Space Efficient Regression Testing for Configurable Systems

    Full text link
    Configurable systems are those that can be adapted from a set of options. They are prevalent and testing them is important and challenging. Existing approaches for testing configurable systems are either unsound (i.e., they can miss fault-revealing configurations) or do not scale. This paper proposes EvoSPLat, a regression testing technique for configurable systems. EvoSPLat builds on our previously-developed technique, SPLat, which explores all dynamically reachable configurations from a test. EvoSPLat is tuned for two scenarios of use in regression testing: Regression Configuration Selection (RCS) and Regression Test Selection (RTS). EvoSPLat for RCS prunes configurations (not tests) that are not impacted by changes whereas EvoSPLat for RTS prunes tests (not configurations) which are not impacted by changes. Handling both scenarios in the context of evolution is important. Experimental results show that EvoSPLat is promising. We observed a substantial reduction in time (22%) and in the number of configurations (45%) for configurable Java programs. In a case study on a large real-world configurable system (GCC), EvoSPLat reduced 35% of the running time. Comparing EvoSPLat with sampling techniques, 2-wise was the most efficient technique, but it missed two bugs whereas EvoSPLat detected all bugs four times faster than 6-wise, on average.Comment: 14 page

    Visualizing test diversity to support test optimisation

    Full text link
    Diversity has been used as an effective criteria to optimise test suites for cost-effective testing. Particularly, diversity-based (alternatively referred to as similarity-based) techniques have the benefit of being generic and applicable across different Systems Under Test (SUT), and have been used to automatically select or prioritise large sets of test cases. However, it is a challenge to feedback diversity information to developers and testers since results are typically many-dimensional. Furthermore, the generality of diversity-based approaches makes it harder to choose when and where to apply them. In this paper we address these challenges by investigating: i) what are the trade-off in using different sources of diversity (e.g., diversity of test requirements or test scripts) to optimise large test suites, and ii) how visualisation of test diversity data can assist testers for test optimisation and improvement. We perform a case study on three industrial projects and present quantitative results on the fault detection capabilities and redundancy levels of different sets of test cases. Our key result is that test similarity maps, based on pair-wise diversity calculations, helped industrial practitioners identify issues with their test repositories and decide on actions to improve. We conclude that the visualisation of diversity information can assist testers in their maintenance and optimisation activities

    A Survey on Software Testing Techniques using Genetic Algorithm

    Full text link
    The overall aim of the software industry is to ensure delivery of high quality software to the end user. To ensure high quality software, it is required to test software. Testing ensures that software meets user specifications and requirements. However, the field of software testing has a number of underlying issues like effective generation of test cases, prioritisation of test cases etc which need to be tackled. These issues demand on effort, time and cost of the testing. Different techniques and methodologies have been proposed for taking care of these issues. Use of evolutionary algorithms for automatic test generation has been an area of interest for many researchers. Genetic Algorithm (GA) is one such form of evolutionary algorithms. In this research paper, we present a survey of GA approach for addressing the various issues encountered during software testing.Comment: 13 Page

    Is the Stack Distance Between Test Case and Method Correlated With Test Effectiveness?

    Full text link
    Mutation testing is a means to assess the effectiveness of a test suite and its outcome is considered more meaningful than code coverage metrics. However, despite several optimizations, mutation testing requires a significant computational effort and has not been widely adopted in industry. Therefore, we study in this paper whether test effectiveness can be approximated using a more light-weight approach. We hypothesize that a test case is more likely to detect faults in methods that are close to the test case on the call stack than in methods that the test case accesses indirectly through many other methods. Based on this hypothesis, we propose the minimal stack distance between test case and method as a new test measure, which expresses how close any test case comes to a given method, and study its correlation with test effectiveness. We conducted an empirical study with 21 open-source projects, which comprise in total 1.8 million LOC, and show that a correlation exists between stack distance and test effectiveness. The correlation reaches a strength up to 0.58. We further show that a classifier using the minimal stack distance along with additional easily computable measures can predict the mutation testing result of a method with 92.9% precision and 93.4% recall. Hence, such a classifier can be taken into consideration as a light-weight alternative to mutation testing or as a preceding, less costly step to that.Comment: EASE 201

    A Model to Estimate First-Order Mutation Coverage from Higher-Order Mutation Coverage

    Full text link
    The test suite is essential for fault detection during software development. First-order mutation coverage is an accurate metric to quantify the quality of the test suite. However, it is computationally expensive. Hence, the adoption of this metric is limited. In this study, we address this issue by proposing a realistic model able to estimate first-order mutation coverage using only higher-order mutation coverage. Our study shows how the estimation evolves along with the order of mutation. We validate the model with an empirical study based on 17 open-source projects.Comment: 2016 IEEE International Conference on Software Quality, Reliability, and Security. 9 page

    The Co-Evolution of Test Maintenance and Code Maintenance through the lens of Fine-Grained Semantic Changes

    Full text link
    Automatic testing is a widely adopted technique for improving software quality. Software developers add, remove and update test methods and test classes as part of the software development process as well as during the evolution phase, following the initial release. In this work we conduct a large scale study of 61 popular open source projects and report the relationships we have established between test maintenance, production code maintenance, and semantic changes (e.g, statement added, method removed, etc.). performed in developers' commits. We build predictive models, and show that the number of tests in a software project can be well predicted by employing code maintenance profiles (i.e., how many commits were performed in each of the maintenance activities: corrective, perfective, adaptive). Our findings also reveal that more often than not, developers perform code fixes without performing complementary test maintenance in the same commit (e.g., update an existing test or add a new one). When developers do perform test maintenance, it is likely to be affected by the semantic changes they perform as part of their commit. Our work is based on studying 61 popular open source projects, comprised of over 240,000 commits consisting of over 16,000,000 semantic change type instances, performed by over 4,000 software engineers.Comment: postprint, ICSME 201
    corecore