47,812 research outputs found

    A method for image-based shadow interaction with virtual objects

    Get PDF
    AbstractA lot of researchers have been investigating interactive portable projection systems such as a mini-projector. In addition, in exhibition halls and museums, there is a trend toward using interactive projection systems to make viewing more exciting and impressive. They can also be applied in the field of art, for example, in creating shadow plays. The key idea of the interactive portable projection systems is to recognize the user׳s gesture in real-time. In this paper, a vision-based shadow gesture recognition method is proposed for interactive projection systems. The gesture recognition method is based on the screen image obtained by a single web camera. The method separates only the shadow area by combining the binary image with an input image using a learning algorithm that isolates the background from the input image. The region of interest is recognized with labeling the shadow of separated regions, and then hand shadows are isolated using the defect, convex hull, and moment of each region. To distinguish hand gestures, Hu׳s invariant moment method is used. An optical flow algorithm is used for tracking the fingertip. Using this method, a few interactive applications are developed, which are presented in this paper

    A Wearable Textile 3D Gesture Recognition Sensor Based on Screen-Printing Technology

    Full text link
    [EN] Research has developed various solutions in order for computers to recognize hand gestures in the context of human machine interface (HMI). The design of a successful hand gesture recognition system must address functionality and usability. The gesture recognition market has evolved from touchpads to touchless sensors, which do not need direct contact. Their application in textiles ranges from the field of medical environments to smart home applications and the automotive industry. In this paper, a textile capacitive touchless sensor has been developed by using screen-printing technology. Two different designs were developed to obtain the best configuration, obtaining good results in both cases. Finally, as a real application, a complete solution of the sensor with wireless communications is presented to be used as an interface for a mobile phone.The work presented is funded by the Conselleria d'Economia Sostenible, Sectors Productius i Treball, through IVACE (Instituto Valenciano de Competitividad Empresarial) and cofounded by ERDF funding from the EU. Application No.: IMAMCI/2019/1. This work was also supported by the Spanish Government/FEDER funds (RTI2018-100910-B-C43) (MINECO/FEDER).Ferri Pascual, J.; Llinares Llopis, R.; Moreno Canton, J.; Ibáñez Civera, FJ.; Garcia-Breijo, E. (2019). A Wearable Textile 3D Gesture Recognition Sensor Based on Screen-Printing Technology. Sensors. 19(23):1-32. https://doi.org/10.3390/s19235068S1321923Chakraborty, B. K., Sarma, D., Bhuyan, M. K., & MacDorman, K. F. (2017). Review of constraints on vision‐based gesture recognition for human–computer interaction. IET Computer Vision, 12(1), 3-15. doi:10.1049/iet-cvi.2017.0052Zhang, Z. (2012). Microsoft Kinect Sensor and Its Effect. IEEE Multimedia, 19(2), 4-10. doi:10.1109/mmul.2012.24Rautaray, S. S. (2012). Real Time Hand Gesture Recognition System for Dynamic Applications. International Journal of UbiComp, 3(1), 21-31. doi:10.5121/iju.2012.3103Karim, R. A., Zakaria, N. F., Zulkifley, M. A., Mustafa, M. M., Sagap, I., & Md Latar, N. H. (2013). Telepointer technology in telemedicine : a review. BioMedical Engineering OnLine, 12(1), 21. doi:10.1186/1475-925x-12-21Santos, L., Carbonaro, N., Tognetti, A., González, J., de la Fuente, E., Fraile, J., & Pérez-Turiel, J. (2018). Dynamic Gesture Recognition Using a Smart Glove in Hand-Assisted Laparoscopic Surgery. Technologies, 6(1), 8. doi:10.3390/technologies6010008Singh, A., Buonassisi, J., & Jain, S. (2014). Autonomous Multiple Gesture Recognition System for Disabled People. International Journal of Image, Graphics and Signal Processing, 6(2), 39-45. doi:10.5815/ijigsp.2014.02.05Ohn-Bar, E., & Trivedi, M. M. (2014). Hand Gesture Recognition in Real Time for Automotive Interfaces: A Multimodal Vision-Based Approach and Evaluations. IEEE Transactions on Intelligent Transportation Systems, 15(6), 2368-2377. doi:10.1109/tits.2014.2337331Khan, S. A., & Engelbrecht, A. P. (2010). A fuzzy particle swarm optimization algorithm for computer communication network topology design. Applied Intelligence, 36(1), 161-177. doi:10.1007/s10489-010-0251-2Abraham, L., Urru, A., Normani, N., Wilk, M., Walsh, M., & O’Flynn, B. (2018). Hand Tracking and Gesture Recognition Using Lensless Smart Sensors. Sensors, 18(9), 2834. doi:10.3390/s18092834Zeng, Q., Kuang, Z., Wu, S., & Yang, J. (2019). A Method of Ultrasonic Finger Gesture Recognition Based on the Micro-Doppler Effect. Applied Sciences, 9(11), 2314. doi:10.3390/app9112314Lien, J., Gillian, N., Karagozler, M. E., Amihood, P., Schwesig, C., Olson, E., … Poupyrev, I. (2016). Soli. ACM Transactions on Graphics, 35(4), 1-19. doi:10.1145/2897824.2925953Sang, Y., Shi, L., & Liu, Y. (2018). Micro Hand Gesture Recognition System Using Ultrasonic Active Sensing. IEEE Access, 6, 49339-49347. doi:10.1109/access.2018.2868268Ferri, J., Lidón-Roger, J., Moreno, J., Martinez, G., & Garcia-Breijo, E. (2017). A Wearable Textile 2D Touchpad Sensor Based on Screen-Printing Technology. Materials, 10(12), 1450. doi:10.3390/ma10121450Nunes, J., Castro, N., Gonçalves, S., Pereira, N., Correia, V., & Lanceros-Mendez, S. (2017). Marked Object Recognition Multitouch Screen Printed Touchpad for Interactive Applications. Sensors, 17(12), 2786. doi:10.3390/s17122786Ferri, J., Perez Fuster, C., Llinares Llopis, R., Moreno, J., & Garcia‑Breijo, E. (2018). Integration of a 2D Touch Sensor with an Electroluminescent Display by Using a Screen-Printing Technology on Textile Substrate. Sensors, 18(10), 3313. doi:10.3390/s18103313Cronin, S., & Doherty, G. (2018). Touchless computer interfaces in hospitals: A review. Health Informatics Journal, 25(4), 1325-1342. doi:10.1177/1460458217748342Haslinger, L., Wasserthal, S., & Zagar, B. G. (2017). P3.1 - A capacitive measurement system for gesture regocnition. Proceedings Sensor 2017. doi:10.5162/sensor2017/p3.1Cherenack, K., & van Pieterson, L. (2012). Smart textiles: Challenges and opportunities. Journal of Applied Physics, 112(9), 091301. doi:10.1063/1.474272

    Granular synthesis for display of time-varying probability densities

    Get PDF
    We present a method for displaying time-varying probabilistic information to users using an asynchronous granular synthesis technique. We extend the basic synthesis technique to include distribution over waveform source, spatial position, pitch and time inside waveforms. To enhance the synthesis in interactive contexts, we "quicken" the display by integrating predictions of user behaviour into the sonification. This includes summing the derivatives of the distribution during exploration of static densities, and using Monte-Carlo sampling to predict future user states in nonlinear dynamic systems. These techniques can be used to improve user performance in continuous control systems and in the interactive exploration of high dimensional spaces. This technique provides feedback from users potential goals, and their progress toward achieving them; modulating the feedback with quickening can help shape the users actions toward achieving these goals. We have applied these techniques to a simple nonlinear control problem as well as to the sonification of on-line probabilistic gesture recognition. We are applying these displays to mobile, gestural interfaces, where visual display is often impractical. The granular synthesis approach is theoretically elegant and easily applied in contexts where dynamic probabilistic displays are required

    Sonification of probabilistic feedback through granular synthesis

    Get PDF
    We describe a method to improve user feedback, specifically the display of time-varying probabilistic information, through asynchronous granular synthesis. We have applied these techniques to challenging control problems as well as to the sonification of online probabilistic gesture recognition. We're using these displays in mobile, gestural interfaces where visual display is often impractical

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専

    Vision systems with the human in the loop

    Get PDF
    The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge, they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three systems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psychologically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability experiments will be stressed
    corecore