21,505 research outputs found

    Ontology-based specific and exhaustive user profiles for constraint information fusion for multi-agents

    Get PDF
    Intelligent agents are an advanced technology utilized in Web Intelligence. When searching information from a distributed Web environment, information is retrieved by multi-agents on the client site and fused on the broker site. The current information fusion techniques rely on cooperation of agents to provide statistics. Such techniques are computationally expensive and unrealistic in the real world. In this paper, we introduce a model that uses a world ontology constructed from the Dewey Decimal Classification to acquire user profiles. By search using specific and exhaustive user profiles, information fusion techniques no longer rely on the statistics provided by agents. The model has been successfully evaluated using the large INEX data set simulating the distributed Web environment

    Exploiting Synergy Between Ontologies and Recommender Systems

    No full text
    Recommender systems learn about user preferences over time, automatically finding things of similar interest. This reduces the burden of creating explicit queries. Recommender systems do, however, suffer from cold-start problems where no initial information is available early on upon which to base recommendations. Semantic knowledge structures, such as ontologies, can provide valuable domain knowledge and user information. However, acquiring such knowledge and keeping it up to date is not a trivial task and user interests are particularly difficult to acquire and maintain. This paper investigates the synergy between a web-based research paper recommender system and an ontology containing information automatically extracted from departmental databases available on the web. The ontology is used to address the recommender systems cold-start problem. The recommender system addresses the ontology's interest-acquisition problem. An empirical evaluation of this approach is conducted and the performance of the integrated systems measured

    Exploiting synergy between ontologies and recommender systems

    Get PDF
    Recommender systems learn about user preferences over time, automatically finding things of similar interest. This reduces the burden of creating explicit queries. Recommender systems do, however, suffer from cold-start problems where no initial information is available early on upon which to base recommendations.Semantic knowledge structures, such as ontologies, can provide valuable domain knowledge and user information. However, acquiring such knowledge and keeping it up to date is not a trivial task and user interests are particularly difficult to acquire and maintain. This paper investigates the synergy between a web-based research paper recommender system and an ontology containing information automatically extracted from departmental databases available on the web. The ontology is used to address the recommender systems cold-start problem. The recommender system addresses the ontology's interest-acquisition problem. An empirical evaluation of this approach is conducted and the performance of the integrated systems measured

    Expanding sensor networks to automate knowledge acquisition

    Get PDF
    The availability of accurate, low-cost sensors to scientists has resulted in widespread deployment in a variety of sporting and health environments. The sensor data output is often in a raw, proprietary or unstructured format. As a result, it is often difficult to query multiple sensors for complex properties or actions. In our research, we deploy a heterogeneous sensor network to detect the various biological and physiological properties in athletes during training activities. The goal for exercise physiologists is to quickly identify key intervals in exercise such as moments of stress or fatigue. This is not currently possible because of low level sensors and a lack of query language support. Thus, our motivation is to expand the sensor network with a contextual layer that enriches raw sensor data, so that it can be exploited by a high level query language. To achieve this, the domain expert specifies events in a tradiational event-condition-action format to deliver the required contextual enrichment

    Improving Knowledge Retrieval in Digital Libraries Applying Intelligent Techniques

    Get PDF
    Nowadays an enormous quantity of heterogeneous and distributed information is stored in the digital University. Exploring online collections to find knowledge relevant to a user’s interests is a challenging work. The artificial intelligence and Semantic Web provide a common framework that allows knowledge to be shared and reused in an efficient way. In this work we propose a comprehensive approach for discovering E-learning objects in large digital collections based on analysis of recorded semantic metadata in those objects and the application of expert system technologies. We have used Case Based-Reasoning methodology to develop a prototype for supporting efficient retrieval knowledge from online repositories. We suggest a conceptual architecture for a semantic search engine. OntoUS is a collaborative effort that proposes a new form of interaction between users and digital libraries, where the latter are adapted to users and their surroundings

    Enriching ontological user profiles with tagging history for multi-domain recommendations

    Get PDF
    Many advanced recommendation frameworks employ ontologies of various complexities to model individuals and items, providing a mechanism for the expression of user interests and the representation of item attributes. As a result, complex matching techniques can be applied to support individuals in the discovery of items according to explicit and implicit user preferences. Recently, the rapid adoption of Web2.0, and the proliferation of social networking sites, has resulted in more and more users providing an increasing amount of information about themselves that could be exploited for recommendation purposes. However, the unification of personal information with ontologies using the contemporary knowledge representation methods often associated with Web2.0 applications, such as community tagging, is a non-trivial task. In this paper, we propose a method for the unification of tags with ontologies by grounding tags to a shared representation in the form of Wordnet and Wikipedia. We incorporate individuals' tagging history into their ontological profiles by matching tags with ontology concepts. This approach is preliminary evaluated by extending an existing news recommendation system with user tagging histories harvested from popular social networking sites

    Modelling data intensive web sites with OntoWeaver

    Get PDF
    This paper illustrates the OntoWeaver modelling approach, which relies on a set of comprehensive site ontologies to model all aspects of data intensive web sites and thus offers high level support for the design and development of data-intensive web sites. In particular, the OntoWeaver site ontologies comprise two components: a site view ontology and a presentation ontology. The site view ontology provides meta-models to allow for the composition of sophisticated site views, which allow end users to navigate and manipulate the underlying domain databases. The presentation ontology abstracts the look and feel for site views and makes it possible for the visual appearance and layout to be specified at a high level of abstractio

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Modeling an ontology on accessible evacuation routes for emergencies

    Get PDF
    Providing alert communication in emergency situations is vital to reduce the number of victims. However, this is a challenging goal for researchers and professionals due to the diverse pool of prospective users, e.g. people with disabilities as well as other vulnerable groups. Moreover, in the event of an emergency situation, many people could become vulnerable because of exceptional circumstances such as stress, an unknown environment or even visual impairment (e.g. fire causing smoke). Within this scope, a crucial activity is to notify affected people about safe places and available evacuation routes. In order to address this need, we propose to extend an ontology, called SEMA4A (Simple EMergency Alert 4 [for] All), developed in a previous work for managing knowledge about accessibility guidelines, emergency situations and communication technologies. In this paper, we introduce a semi-automatic technique for knowledge acquisition and modeling on accessible evacuation routes. We introduce a use case to show applications of the ontology and conclude with an evaluation involving several experts in evacuation procedures. © 2014 Elsevier Ltd. All rights reserved
    corecore