34,073 research outputs found

    Lanczos algorithm with Matrix Product States for dynamical correlation functions

    Get PDF
    The density-matrix renormalization group (DMRG) algorithm can be adapted to the calculation of dynamical correlation functions in various ways which all represent compromises between computational efficiency and physical accuracy. In this paper we reconsider the oldest approach based on a suitable Lanczos-generated approximate basis and implement it using matrix product states (MPS) for the representation of the basis states. The direct use of matrix product states combined with an ex-post reorthogonalization method allows to avoid several shortcomings of the original approach, namely the multi-targeting and the approximate representation of the Hamiltonian inherent in earlier Lanczos-method implementations in the DMRG framework, and to deal with the ghost problem of Lanczos methods, leading to a much better convergence of the spectral weights and poles. We present results for the dynamic spin structure factor of the spin-1/2 antiferromagnetic Heisenberg chain. A comparison to Bethe ansatz results in the thermodynamic limit reveals that the MPS-based Lanczos approach is much more accurate than earlier approaches at minor additional numerical cost.Comment: final version 11 pages, 11 figure

    A Scaling Theory of Bifurcations in the Symmetric Weak-Noise Escape Problem

    Full text link
    We consider the overdamped limit of two-dimensional double well systems perturbed by weak noise. In the weak noise limit the most probable fluctuational path leading from either point attractor to the separatrix (the most probable escape path, or MPEP) must terminate on the saddle between the two wells. However, as the parameters of a symmetric double well system are varied, a unique MPEP may bifurcate into two equally likely MPEP's. At the bifurcation point in parameter space, the activation kinetics of the system become non-Arrhenius. In this paper we quantify the non-Arrhenius behavior of a system at the bifurcation point, by using the Maslov-WKB method to construct an approximation to the quasistationary probability distribution of the system that is valid in a boundary layer near the separatrix. The approximation is a formal asymptotic solution of the Smoluchowski equation. Our analysis relies on the development of a new scaling theory, which yields `critical exponents' describing weak-noise behavior near the saddle, at the bifurcation point.Comment: LaTeX, 60 pages, 24 Postscript figures. Uses epsf macros to include the figures. A file in `uufiles' format containing the figures is separately available at ftp://platinum.math.arizona.edu/pub/papers-rsm/paperF/figures.uu and a Postscript version of the whole paper (figures included) is available at ftp://platinum.math.arizona.edu/pub/papers-rsm/paperF/paperF.p

    On the efficient computation of high-order derivatives for implicitly defined functions

    Full text link
    Scientific studies often require the precise calculation of derivatives. In many cases an analytical calculation is not feasible and one resorts to evaluating derivatives numerically. These are error-prone, especially for higher-order derivatives. A technique based on algorithmic differentiation is presented which allows for a precise calculation of higher-order derivatives. The method can be widely applied even for the case of only numerically solvable, implicit dependencies which totally hamper a semi-analytical calculation of the derivatives. As a demonstration the method is applied to a quantum field theoretical physical model. The results are compared with standard numerical derivative methods.Comment: 11 pages, 4 figures, to appear in Comput. Phys. Commu

    Recent developments of the Hierarchical Reference Theory of Fluids and its relation to the Renormalization Group

    Full text link
    The Hierarchical Reference Theory (HRT) of fluids is a general framework for the description of phase transitions in microscopic models of classical and quantum statistical physics. The foundations of HRT are briefly reviewed in a self-consistent formulation which includes both the original sharp cut-off procedure and the smooth cut-off implementation, which has been recently investigated. The critical properties of HRT are summarized, together with the behavior of the theory at first order phase transitions. However, the emphasis of this presentation is on the close relationship between HRT and non perturbative renormalization group methods, as well as on recent generalizations of HRT to microscopic models of interest in soft matter and quantum many body physics.Comment: 17 pages, 5 figures. Review paper to appear in Molecular Physic

    Ideal Fermi gases in harmonic oscillator potential traps

    Full text link
    We study the thermodynamic properties of an ideal gas of fermions in a harmonic oscillator confining potential. The analogy between this problem and the de Haas-van Alphen effect is discussed and used to obtain analytical results for the chemical potential and specific heat in the case of both isotropic and anisotropic potentials. Step-like behaviour in the chemical potential, first noted in numerical studies, is obtained analytically and shown to result in an oscillatory behaviour of the specific heat when the particle number is varied. The origin of these oscillations is that part of the thermodynamic potential responsible for the de Haas-van Alphen-type effect. At low temperatures we show analytically that there are significant deviations in the specific heat from the expected linear temperature dependence, again as a consequence of the de Haas-van Alphen part of the thermodynamic potential. Results are given for one, two, and three spatial dimensions. In the anisotropic case we show how the specific heat jumps as the ratio of oscillator frequencies varies.Comment: 53 pages, 7 figure
    corecore