85 research outputs found

    Sound Source Separation

    Get PDF
    This is the author's accepted pre-print of the article, first published as G. Evangelista, S. Marchand, M. D. Plumbley and E. Vincent. Sound source separation. In U. Zölzer (ed.), DAFX: Digital Audio Effects, 2nd edition, Chapter 14, pp. 551-588. John Wiley & Sons, March 2011. ISBN 9781119991298. DOI: 10.1002/9781119991298.ch14file: Proof:e\EvangelistaMarchandPlumbleyV11-sound.pdf:PDF owner: markp timestamp: 2011.04.26file: Proof:e\EvangelistaMarchandPlumbleyV11-sound.pdf:PDF owner: markp timestamp: 2011.04.2

    High-resolution sinusoidal analysis for resolving harmonic collisions in music audio signal processing

    Get PDF
    Many music signals can largely be considered an additive combination of multiple sources, such as musical instruments or voice. If the musical sources are pitched instruments, the spectra they produce are predominantly harmonic, and are thus well suited to an additive sinusoidal model. However, due to resolution limits inherent in time-frequency analyses, when the harmonics of multiple sources occupy equivalent time-frequency regions, their individual properties are additively combined in the time-frequency representation of the mixed signal. Any such time-frequency point in a mixture where multiple harmonics overlap produces a single observation from which the contributions owed to each of the individual harmonics cannot be trivially deduced. These overlaps are referred to as overlapping partials or harmonic collisions. If one wishes to infer some information about individual sources in music mixtures, the information carried in regions where collided harmonics exist becomes unreliable due to interference from other sources. This interference has ramifications in a variety of music signal processing applications such as multiple fundamental frequency estimation, source separation, and instrumentation identification. This thesis addresses harmonic collisions in music signal processing applications. As a solution to the harmonic collision problem, a class of signal subspace-based high-resolution sinusoidal parameter estimators is explored. Specifically, the direct matrix pencil method, or equivalently, the Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) method, is used with the goal of producing estimates of the salient parameters of individual harmonics that occupy equivalent time-frequency regions. This estimation method is adapted here to be applicable to time-varying signals such as musical audio. While high-resolution methods have been previously explored in the context of music signal processing, previous work has not addressed whether or not such methods truly produce high-resolution sinusoidal parameter estimates in real-world music audio signals. Therefore, this thesis answers the question of whether high-resolution sinusoidal parameter estimators are really high-resolution for real music signals. This work directly explores the capabilities of this form of sinusoidal parameter estimation to resolve collided harmonics. The capabilities of this analysis method are also explored in the context of music signal processing applications. Potential benefits of high-resolution sinusoidal analysis are examined in experiments involving multiple fundamental frequency estimation and audio source separation. This work shows that there are indeed benefits to high-resolution sinusoidal analysis in music signal processing applications, especially when compared to methods that produce sinusoidal parameter estimates based on more traditional time-frequency representations. The benefits of this form of sinusoidal analysis are made most evident in multiple fundamental frequency estimation applications, where substantial performance gains are seen. High-resolution analysis in the context of computational auditory scene analysis-based source separation shows similar performance to existing comparable methods

    Musical source separation using time-frequency source priors

    Full text link

    Pitch-Informed Solo and Accompaniment Separation

    Get PDF
    Das Thema dieser Dissertation ist die Entwicklung eines Systems zur Tonhöhen-informierten Quellentrennung von Musiksignalen in Soloinstrument und Begleitung. Dieses ist geeignet, die dominanten Instrumente aus einem Musikstück zu isolieren, unabhängig von der Art des Instruments, der Begleitung und Stilrichtung. Dabei werden nur einstimmige Melodieinstrumente in Betracht gezogen. Die Musikaufnahmen liegen monaural vor, es kann also keine zusätzliche Information aus der Verteilung der Instrumente im Stereo-Panorama gewonnen werden. Die entwickelte Methode nutzt Tonhöhen-Information als Basis für eine sinusoidale Modellierung der spektralen Eigenschaften des Soloinstruments aus dem Musikmischsignal. Anstatt die spektralen Informationen pro Frame zu bestimmen, werden in der vorgeschlagenen Methode Tonobjekte für die Separation genutzt. Tonobjekt-basierte Verarbeitung ermöglicht es, zusätzlich die Notenanfänge zu verfeinern, transiente Artefakte zu reduzieren, gemeinsame Amplitudenmodulation (Common Amplitude Modulation CAM) einzubeziehen und besser nichtharmonische Elemente der Töne abzuschätzen. Der vorgestellte Algorithmus zur Quellentrennung von Soloinstrument und Begleitung ermöglicht eine Echtzeitverarbeitung und ist somit relevant für den praktischen Einsatz. Ein Experiment zur besseren Modellierung der Zusammenhänge zwischen Magnitude, Phase und Feinfrequenz von isolierten Instrumententönen wurde durchgeführt. Als Ergebnis konnte die Kontinuität der zeitlichen Einhüllenden, die Inharmonizität bestimmter Musikinstrumente und die Auswertung des Phasenfortschritts für die vorgestellte Methode ausgenutzt werden. Zusätzlich wurde ein Algorithmus für die Quellentrennung in perkussive und harmonische Signalanteile auf Basis des Phasenfortschritts entwickelt. Dieser erreicht ein verbesserte perzeptuelle Qualität der harmonischen und perkussiven Signale gegenüber vergleichbaren Methoden nach dem Stand der Technik. Die vorgestellte Methode zur Klangquellentrennung in Soloinstrument und Begleitung wurde zu den Evaluationskampagnen SiSEC 2011 und SiSEC 2013 eingereicht. Dort konnten vergleichbare Ergebnisse im Hinblick auf perzeptuelle Bewertungsmaße erzielt werden. Die Qualität eines Referenzalgorithmus im Hinblick auf den in dieser Dissertation beschriebenen Instrumentaldatensatz übertroffen werden. Als ein Anwendungsszenario für die Klangquellentrennung in Solo und Begleitung wurde ein Hörtest durchgeführt, der die Qualitätsanforderungen an Quellentrennung im Kontext von Musiklernsoftware bewerten sollte. Die Ergebnisse dieses Hörtests zeigen, dass die Solo- und Begleitspur gemäß unterschiedlicher Qualitätskriterien getrennt werden sollten. Die Musiklernsoftware Songs2See integriert die vorgestellte Klangquellentrennung bereits in einer kommerziell erhältlichen Anwendung.This thesis addresses the development of a system for pitch-informed solo and accompaniment separation capable of separating main instruments from music accompaniment regardless of the musical genre of the track, or type of music accompaniment. For the solo instrument, only pitched monophonic instruments were considered in a single-channel scenario where no panning or spatial location information is available. In the proposed method, pitch information is used as an initial stage of a sinusoidal modeling approach that attempts to estimate the spectral information of the solo instrument from a given audio mixture. Instead of estimating the solo instrument on a frame by frame basis, the proposed method gathers information of tone objects to perform separation. Tone-based processing allowed the inclusion of novel processing stages for attack refinement, transient interference reduction, common amplitude modulation (CAM) of tone objects, and for better estimation of non-harmonic elements that can occur in musical instrument tones. The proposed solo and accompaniment algorithm is an efficient method suitable for real-world applications. A study was conducted to better model magnitude, frequency, and phase of isolated musical instrument tones. As a result of this study, temporal envelope smoothness, inharmonicty of musical instruments, and phase expectation were exploited in the proposed separation method. Additionally, an algorithm for harmonic/percussive separation based on phase expectation was proposed. The algorithm shows improved perceptual quality with respect to state-of-the-art methods for harmonic/percussive separation. The proposed solo and accompaniment method obtained perceptual quality scores comparable to other state-of-the-art algorithms under the SiSEC 2011 and SiSEC 2013 campaigns, and outperformed the comparison algorithm on the instrumental dataset described in this thesis.As a use-case of solo and accompaniment separation, a listening test procedure was conducted to assess separation quality requirements in the context of music education. Results from the listening test showed that solo and accompaniment tracks should be optimized differently to suit quality requirements of music education. The Songs2See application was presented as commercial music learning software which includes the proposed solo and accompaniment separation method

    Binaural localization and separation techniques

    Get PDF
    Abstract Based on binaural signals, i.e. the signals observed at the two ears, a listener can localize and recognize different sound sources and then focus on one of these. For decades, researchers have tried to invent a machine that can do the same under similar conditions. Despite all the efforts, the human auditory system is, by far, superior to any machine that has been devised. The topic of this thesis is computational techniques for the localization and separation of sources in binaural signals. In order to give an overview of different areas of research that have considered the problems of source localization and separation, we start with a review of existing techniques. This provides the background for the techniques that we propose subsequently. Binaural Localization The most important cues for localization of sound sources in binaural signals are the level and time differences between the ears. We propose a technique for the joint evaluation of these cues where noisy level difference estimates are combined with less noisy but ambiguous time difference estimates in order to provide accurate azimuth estimates. The proposed technique enables the localization of sources and the tracking of these in dynamic scenes. Head model Based on a study of the level and time differences as function of azimuth angle for different heads, we propose a generic model that is parametrized by the distance between the ears only. This enables the use of the binaural localization technique mentioned above for a listener whose head related transfer functions have not been measured. Binaural separation For the separation of sources we propose a method based on spatial windowing in the azimuth parameter space. Separation of overlapping partials Finally, we propose a technique for the separation of overlapping partials in mixtures of harmonic instruments. The technique is based on the similarity of temporal envelopes between the different partials of a harmonic note

    Audio source separation for music in low-latency and high-latency scenarios

    Get PDF
    Aquesta tesi proposa mètodes per tractar les limitacions de les tècniques existents de separació de fonts musicals en condicions de baixa i alta latència. En primer lloc, ens centrem en els mètodes amb un baix cost computacional i baixa latència. Proposem l'ús de la regularització de Tikhonov com a mètode de descomposició de l'espectre en el context de baixa latència. El comparem amb les tècniques existents en tasques d'estimació i seguiment dels tons, que són passos crucials en molts mètodes de separació. A continuació utilitzem i avaluem el mètode de descomposició de l'espectre en tasques de separació de veu cantada, baix i percussió. En segon lloc, proposem diversos mètodes d'alta latència que milloren la separació de la veu cantada, gràcies al modelatge de components específics, com la respiració i les consonants. Finalment, explorem l'ús de correlacions temporals i anotacions manuals per millorar la separació dels instruments de percussió i dels senyals musicals polifònics complexes.Esta tesis propone métodos para tratar las limitaciones de las técnicas existentes de separación de fuentes musicales en condiciones de baja y alta latencia. En primer lugar, nos centramos en los métodos con un bajo coste computacional y baja latencia. Proponemos el uso de la regularización de Tikhonov como método de descomposición del espectro en el contexto de baja latencia. Lo comparamos con las técnicas existentes en tareas de estimación y seguimiento de los tonos, que son pasos cruciales en muchos métodos de separación. A continuación utilizamos y evaluamos el método de descomposición del espectro en tareas de separación de voz cantada, bajo y percusión. En segundo lugar, proponemos varios métodos de alta latencia que mejoran la separación de la voz cantada, gracias al modelado de componentes que a menudo no se toman en cuenta, como la respiración y las consonantes. Finalmente, exploramos el uso de correlaciones temporales y anotaciones manuales para mejorar la separación de los instrumentos de percusión y señales musicales polifónicas complejas.This thesis proposes specific methods to address the limitations of current music source separation methods in low-latency and high-latency scenarios. First, we focus on methods with low computational cost and low latency. We propose the use of Tikhonov regularization as a method for spectrum decomposition in the low-latency context. We compare it to existing techniques in pitch estimation and tracking tasks, crucial steps in many separation methods. We then use the proposed spectrum decomposition method in low-latency separation tasks targeting singing voice, bass and drums. Second, we propose several high-latency methods that improve the separation of singing voice by modeling components that are often not accounted for, such as breathiness and consonants. Finally, we explore using temporal correlations and human annotations to enhance the separation of drums and complex polyphonic music signals

    Applying source separation to music

    Get PDF
    International audienceSeparation of existing audio into remixable elements is very useful to repurpose music audio. Applications include upmixing video soundtracks to surround sound (e.g. home theater 5.1 systems), facilitating music transcriptions, allowing better mashups and remixes for disk jockeys, and rebalancing sound levels on multiple instruments or voices recorded simultaneously to a single track. In this chapter, we provide an overview of the algorithms and approaches designed to address the challenges and opportunities in music. Where applicable, we also introduce commonalities and links to source separation for video soundtracks, since many musical scenarios involve video soundtracks (e.g. YouTube recordings of live concerts, movie sound tracks). While space prohibits describing every method in detail, we include detail on representative music‐specific algorithms and approaches not covered in other chapters. The intent is to give the reader a high‐level understanding of the workings of key exemplars of the source separation approaches applied in this domain

    Real-time Sound Source Separation For Music Applications

    Get PDF
    Sound source separation refers to the task of extracting individual sound sources from some number of mixtures of those sound sources. In this thesis, a novel sound source separation algorithm for musical applications is presented. It leverages the fact that the vast majority of commercially recorded music since the 1950s has been mixed down for two channel reproduction, more commonly known as stereo. The algorithm presented in Chapter 3 in this thesis requires no prior knowledge or learning and performs the task of separation based purely on azimuth discrimination within the stereo field. The algorithm exploits the use of the pan pot as a means to achieve image localisation within stereophonic recordings. As such, only an interaural intensity difference exists between left and right channels for a single source. We use gain scaling and phase cancellation techniques to expose frequency dependent nulls across the azimuth domain, from which source separation and resynthesis is carried out. The algorithm is demonstrated to be state of the art in the field of sound source separation but also to be a useful pre-process to other tasks such as music segmentation and surround sound upmixing

    Trennung und Schätzung der Anzahl von Audiosignalquellen mit Zeit- und Frequenzüberlappung

    Get PDF
    Everyday audio recordings involve mixture signals: music contains a mixture of instruments; in a meeting or conference, there is a mixture of human voices. For these mixtures, automatically separating or estimating the number of sources is a challenging task. A common assumption when processing mixtures in the time-frequency domain is that sources are not fully overlapped. However, in this work we consider some cases where the overlap is severe — for instance, when instruments play the same note (unison) or when many people speak concurrently ("cocktail party") — highlighting the need for new representations and more powerful models. To address the problems of source separation and count estimation, we use conventional signal processing techniques as well as deep neural networks (DNN). We first address the source separation problem for unison instrument mixtures, studying the distinct spectro-temporal modulations caused by vibrato. To exploit these modulations, we developed a method based on time warping, informed by an estimate of the fundamental frequency. For cases where such estimates are not available, we present an unsupervised model, inspired by the way humans group time-varying sources (common fate). This contribution comes with a novel representation that improves separation for overlapped and modulated sources on unison mixtures but also improves vocal and accompaniment separation when used as an input for a DNN model. Then, we focus on estimating the number of sources in a mixture, which is important for real-world scenarios. Our work on count estimation was motivated by a study on how humans can address this task, which lead us to conduct listening experiments, confirming that humans are only able to estimate the number of up to four sources correctly. To answer the question of whether machines can perform similarly, we present a DNN architecture, trained to estimate the number of concurrent speakers. Our results show improvements compared to other methods, and the model even outperformed humans on the same task. In both the source separation and source count estimation tasks, the key contribution of this thesis is the concept of “modulation”, which is important to computationally mimic human performance. Our proposed Common Fate Transform is an adequate representation to disentangle overlapping signals for separation, and an inspection of our DNN count estimation model revealed that it proceeds to find modulation-like intermediate features.Im Alltag sind wir von gemischten Signalen umgeben: Musik besteht aus einer Mischung von Instrumenten; in einem Meeting oder auf einer Konferenz sind wir einer Mischung menschlicher Stimmen ausgesetzt. Für diese Mischungen ist die automatische Quellentrennung oder die Bestimmung der Anzahl an Quellen eine anspruchsvolle Aufgabe. Eine häufige Annahme bei der Verarbeitung von gemischten Signalen im Zeit-Frequenzbereich ist, dass die Quellen sich nicht vollständig überlappen. In dieser Arbeit betrachten wir jedoch einige Fälle, in denen die Überlappung immens ist zum Beispiel, wenn Instrumente den gleichen Ton spielen (unisono) oder wenn viele Menschen gleichzeitig sprechen (Cocktailparty) —, so dass neue Signal-Repräsentationen und leistungsfähigere Modelle notwendig sind. Um die zwei genannten Probleme zu bewältigen, verwenden wir sowohl konventionelle Signalverbeitungsmethoden als auch tiefgehende neuronale Netze (DNN). Wir gehen zunächst auf das Problem der Quellentrennung für Unisono-Instrumentenmischungen ein und untersuchen die speziellen, durch Vibrato ausgelösten, zeitlich-spektralen Modulationen. Um diese Modulationen auszunutzen entwickelten wir eine Methode, die auf Zeitverzerrung basiert und eine Schätzung der Grundfrequenz als zusätzliche Information nutzt. Für Fälle, in denen diese Schätzungen nicht verfügbar sind, stellen wir ein unüberwachtes Modell vor, das inspiriert ist von der Art und Weise, wie Menschen zeitveränderliche Quellen gruppieren (Common Fate). Dieser Beitrag enthält eine neuartige Repräsentation, die die Separierbarkeit für überlappte und modulierte Quellen in Unisono-Mischungen erhöht, aber auch die Trennung in Gesang und Begleitung verbessert, wenn sie in einem DNN-Modell verwendet wird. Im Weiteren beschäftigen wir uns mit der Schätzung der Anzahl von Quellen in einer Mischung, was für reale Szenarien wichtig ist. Unsere Arbeit an der Schätzung der Anzahl war motiviert durch eine Studie, die zeigt, wie wir Menschen diese Aufgabe angehen. Dies hat uns dazu veranlasst, eigene Hörexperimente durchzuführen, die bestätigten, dass Menschen nur in der Lage sind, die Anzahl von bis zu vier Quellen korrekt abzuschätzen. Um nun die Frage zu beantworten, ob Maschinen dies ähnlich gut können, stellen wir eine DNN-Architektur vor, die erlernt hat, die Anzahl der gleichzeitig sprechenden Sprecher zu ermitteln. Die Ergebnisse zeigen Verbesserungen im Vergleich zu anderen Methoden, aber vor allem auch im Vergleich zu menschlichen Hörern. Sowohl bei der Quellentrennung als auch bei der Schätzung der Anzahl an Quellen ist ein Kernbeitrag dieser Arbeit das Konzept der “Modulation”, welches wichtig ist, um die Strategien von Menschen mittels Computern nachzuahmen. Unsere vorgeschlagene Common Fate Transformation ist eine adäquate Darstellung, um die Überlappung von Signalen für die Trennung zugänglich zu machen und eine Inspektion unseres DNN-Zählmodells ergab schließlich, dass sich auch hier modulationsähnliche Merkmale finden lassen
    corecore