10 research outputs found

    An investigation into tools and protocols for commercial audio web-site creation

    Get PDF
    This thesis presents a feasibility study of a Web-based digital music library and purchasing system. It investigates the current status of the enabling technologies for developing such a system. An analysis of various Internet audio codecs, streaming audio protocols, Internet credit card payment security methods, and ways for accessing remote Web databases is presented. The objective of the analysis is to determine the viability and the economic benefits of using these technologies when developing systems that facilitate music distribution over the Internet. A prototype of a distributed digital music library and purchasing system named WAPS (for Web-based Audio Purchasing System) was developed and implemented in the Java programming language. In this thesis both the physical and the logical component elements of WAPS are explored in depth so as to provide an insight into the inherent problems of creating such a system, as well as the overriding benefits derived from the creation of such a system

    Very low bit rate parametric audio coding

    Get PDF
    [no abstract

    Survey of error concealment schemes for real-time audio transmission systems

    Get PDF
    This thesis presents an overview of the main strategies employed for error detection and error concealment in different real-time transmission systems for digital audio. The “Adaptive Differential Pulse-Code Modulation (ADPCM)”, the “Audio Processing Technology Apt-x100”, the “Extended Adaptive Multi-Rate Wideband (AMR-WB+)”, the “Advanced Audio Coding (AAC)”, the “MPEG-1 Audio Layer II (MP2)”, the “MPEG-1 Audio Layer III (MP3)” and finally the “Adaptive Transform Coder 3 (AC3)” are considered. As an example of error management, a simulation of the AMR-WB+ codec is included. The simulation allows an evaluation of the mechanisms included in the codec definition and enables also an evaluation of the different bit error sensitivities of the encoded audio payload.IngenierĂ­a TĂ©cnica en TelemĂĄtic

    Audio Coding Based on Integer Transforms

    Get PDF
    Die Audiocodierung hat sich in den letzten Jahren zu einem sehr populĂ€ren Forschungs- und Anwendungsgebiet entwickelt. Insbesondere gehörangepasste Verfahren zur Audiocodierung, wie etwa MPEG-1 Layer-3 (MP3) oder MPEG-2 Advanced Audio Coding (AAC), werden hĂ€ufig zur effizienten Speicherung und Übertragung von Audiosignalen verwendet. FĂŒr professionelle Anwendungen, wie etwa die Archivierung und Übertragung im Studiobereich, ist hingegen eher eine verlustlose Audiocodierung angebracht. Die bisherigen AnsĂ€tze fĂŒr gehörangepasste und verlustlose Audiocodierung sind technisch völlig verschieden. Moderne gehörangepasste Audiocoder basieren meist auf FilterbĂ€nken, wie etwa der ĂŒberlappenden orthogonalen Transformation "Modifizierte Diskrete Cosinus-Transformation" (MDCT). Verlustlose Audiocoder hingegen verwenden meist prĂ€diktive Codierung zur Redundanzreduktion. Nur wenige AnsĂ€tze zur transformationsbasierten verlustlosen Audiocodierung wurden bisher versucht. Diese Arbeit prĂ€sentiert einen neuen Ansatz hierzu, der das Lifting-Schema auf die in der gehörangepassten Audiocodierung verwendeten ĂŒberlappenden Transformationen anwendet. Dies ermöglicht eine invertierbare Integer-Approximation der ursprĂŒnglichen Transformation, z.B. die IntMDCT als Integer-Approximation der MDCT. Die selbe Technik kann auch fĂŒr FilterbĂ€nke mit niedriger Systemverzögerung angewandt werden. Weiterhin ermöglichen ein neuer, mehrdimensionaler Lifting-Ansatz und eine Technik zur Spektralformung von Quantisierungsfehlern eine Verbesserung der Approximation der ursprĂŒnglichen Transformation. Basierend auf diesen neuen Integer-Transformationen werden in dieser Arbeit neue Verfahren zur Audiocodierung vorgestellt. Die Verfahren umfassen verlustlose Audiocodierung, eine skalierbare verlustlose Erweiterung eines gehörangepassten Audiocoders und einen integrierten Ansatz zur fein skalierbaren gehörangepassten und verlustlosen Audiocodierung. Schließlich wird mit Hilfe der Integer-Transformationen ein neuer Ansatz zur unhörbaren Einbettung von Daten mit hohen Datenraten in unkomprimierte Audiosignale vorgestellt.In recent years audio coding has become a very popular field for research and applications. Especially perceptual audio coding schemes, such as MPEG-1 Layer-3 (MP3) and MPEG-2 Advanced Audio Coding (AAC), are widely used for efficient storage and transmission of music signals. Nevertheless, for professional applications, such as archiving and transmission in studio environments, lossless audio coding schemes are considered more appropriate. Traditionally, the technical approaches used in perceptual and lossless audio coding have been separate worlds. In perceptual audio coding, the use of filter banks, such as the lapped orthogonal transform "Modified Discrete Cosine Transform" (MDCT), has been the approach of choice being used by many state of the art coding schemes. On the other hand, lossless audio coding schemes mostly employ predictive coding of waveforms to remove redundancy. Only few attempts have been made so far to use transform coding for the purpose of lossless audio coding. This work presents a new approach of applying the lifting scheme to lapped transforms used in perceptual audio coding. This allows for an invertible integer-to-integer approximation of the original transform, e.g. the IntMDCT as an integer approximation of the MDCT. The same technique can also be applied to low-delay filter banks. A generalized, multi-dimensional lifting approach and a noise-shaping technique are introduced, allowing to further optimize the accuracy of the approximation to the original transform. Based on these new integer transforms, this work presents new audio coding schemes and applications. The audio coding applications cover lossless audio coding, scalable lossless enhancement of a perceptual audio coder and fine-grain scalable perceptual and lossless audio coding. Finally an approach to data hiding with high data rates in uncompressed audio signals based on integer transforms is described

    Audio Coding Based on Integer Transforms

    Get PDF
    Die Audiocodierung hat sich in den letzten Jahren zu einem sehr populĂ€ren Forschungs- und Anwendungsgebiet entwickelt. Insbesondere gehörangepasste Verfahren zur Audiocodierung, wie etwa MPEG-1 Layer-3 (MP3) oder MPEG-2 Advanced Audio Coding (AAC), werden hĂ€ufig zur effizienten Speicherung und Übertragung von Audiosignalen verwendet. FĂŒr professionelle Anwendungen, wie etwa die Archivierung und Übertragung im Studiobereich, ist hingegen eher eine verlustlose Audiocodierung angebracht. Die bisherigen AnsĂ€tze fĂŒr gehörangepasste und verlustlose Audiocodierung sind technisch völlig verschieden. Moderne gehörangepasste Audiocoder basieren meist auf FilterbĂ€nken, wie etwa der ĂŒberlappenden orthogonalen Transformation "Modifizierte Diskrete Cosinus-Transformation" (MDCT). Verlustlose Audiocoder hingegen verwenden meist prĂ€diktive Codierung zur Redundanzreduktion. Nur wenige AnsĂ€tze zur transformationsbasierten verlustlosen Audiocodierung wurden bisher versucht. Diese Arbeit prĂ€sentiert einen neuen Ansatz hierzu, der das Lifting-Schema auf die in der gehörangepassten Audiocodierung verwendeten ĂŒberlappenden Transformationen anwendet. Dies ermöglicht eine invertierbare Integer-Approximation der ursprĂŒnglichen Transformation, z.B. die IntMDCT als Integer-Approximation der MDCT. Die selbe Technik kann auch fĂŒr FilterbĂ€nke mit niedriger Systemverzögerung angewandt werden. Weiterhin ermöglichen ein neuer, mehrdimensionaler Lifting-Ansatz und eine Technik zur Spektralformung von Quantisierungsfehlern eine Verbesserung der Approximation der ursprĂŒnglichen Transformation. Basierend auf diesen neuen Integer-Transformationen werden in dieser Arbeit neue Verfahren zur Audiocodierung vorgestellt. Die Verfahren umfassen verlustlose Audiocodierung, eine skalierbare verlustlose Erweiterung eines gehörangepassten Audiocoders und einen integrierten Ansatz zur fein skalierbaren gehörangepassten und verlustlosen Audiocodierung. Schließlich wird mit Hilfe der Integer-Transformationen ein neuer Ansatz zur unhörbaren Einbettung von Daten mit hohen Datenraten in unkomprimierte Audiosignale vorgestellt.In recent years audio coding has become a very popular field for research and applications. Especially perceptual audio coding schemes, such as MPEG-1 Layer-3 (MP3) and MPEG-2 Advanced Audio Coding (AAC), are widely used for efficient storage and transmission of music signals. Nevertheless, for professional applications, such as archiving and transmission in studio environments, lossless audio coding schemes are considered more appropriate. Traditionally, the technical approaches used in perceptual and lossless audio coding have been separate worlds. In perceptual audio coding, the use of filter banks, such as the lapped orthogonal transform "Modified Discrete Cosine Transform" (MDCT), has been the approach of choice being used by many state of the art coding schemes. On the other hand, lossless audio coding schemes mostly employ predictive coding of waveforms to remove redundancy. Only few attempts have been made so far to use transform coding for the purpose of lossless audio coding. This work presents a new approach of applying the lifting scheme to lapped transforms used in perceptual audio coding. This allows for an invertible integer-to-integer approximation of the original transform, e.g. the IntMDCT as an integer approximation of the MDCT. The same technique can also be applied to low-delay filter banks. A generalized, multi-dimensional lifting approach and a noise-shaping technique are introduced, allowing to further optimize the accuracy of the approximation to the original transform. Based on these new integer transforms, this work presents new audio coding schemes and applications. The audio coding applications cover lossless audio coding, scalable lossless enhancement of a perceptual audio coder and fine-grain scalable perceptual and lossless audio coding. Finally an approach to data hiding with high data rates in uncompressed audio signals based on integer transforms is described

    A method for retrieving music data with different bit rates using MPEG-4 TwinVQ audio compression

    No full text

    Investigating the build-up of precedence effect using reflection masking

    Get PDF
    The auditory processing level involved in the build‐up of precedence [Freyman et al., J. Acoust. Soc. Am. 90, 874–884 (1991)] has been investigated here by employing reflection masked threshold (RMT) techniques. Given that RMT techniques are generally assumed to address lower levels of the auditory signal processing, such an approach represents a bottom‐up approach to the buildup of precedence. Three conditioner configurations measuring a possible buildup of reflection suppression were compared to the baseline RMT for four reflection delays ranging from 2.5–15 ms. No buildup of reflection suppression was observed for any of the conditioner configurations. Buildup of template (decrease in RMT for two of the conditioners), on the other hand, was found to be delay dependent. For five of six listeners, with reflection delay=2.5 and 15 ms, RMT decreased relative to the baseline. For 5‐ and 10‐ms delay, no change in threshold was observed. It is concluded that the low‐level auditory processing involved in RMT is not sufficient to realize a buildup of reflection suppression. This confirms suggestions that higher level processing is involved in PE buildup. The observed enhancement of reflection detection (RMT) may contribute to active suppression at higher processing levels

    European Information Technology Observatory 1999

    Get PDF

    Temporal processes involved in simultaneous reflection masking

    Get PDF
    corecore