1,110 research outputs found

    Multispectral RTI Analysis of Heterogeneous Artworks

    Get PDF
    We propose a novel multi-spectral reflectance transformation imaging (MS-RTI) framework for the acquisition and direct analysis of the reflectance behavior of heterogeneous artworks. Starting from free-form acquisitions, we compute per-pixel calibrated multi-spectral appearance profiles, which associate a reflectance value to each sampled light direction and frequency. Visualization, relighting, and feature extraction is performed directly on appearance profile data, applying scattered data interpolation based on Radial Basis Functions to estimate per-pixel reflectance from novel lighting directions. We demonstrate how the proposed solution can convey more insights on the object materials and geometric details compared to classical multi-light methods that rely on low-frequency analytical model fitting eventually mixed with a separate handling of high-frequency components, hence requiring constraining priors on material behavior. The flexibility of our approach is illustrated on two heterogeneous case studies, a painting and a dark shiny metallic sculpture, that showcase feature extraction, visualization, and analysis of high-frequency properties of artworks using multi-light, multi-spectral (Visible, UV and IR) acquisitions.Terms: "European Union (EU)" & "Horizon 2020" / Action: H2020-EU.3.6.3. - Reflective societies - cultural heritage and European identity / Acronym: Scan4Reco / Grant number: 665091the DSURF (PRIN 2015) project funded by the Italian Ministry of University and ResearchSardinian Regional Authorities under projects VIGEC and Vis&VideoLa

    Single-shot layered reflectance separation using a polarized light field camera

    Get PDF
    We present a novel computational photography technique for single shot separation of diffuse/specular reflectance as well as novel angular domain separation of layered reflectance. Our solution consists of a two-way polarized light field (TPLF) camera which simultaneously captures two orthogonal states of polarization. A single photograph of a subject acquired with the TPLF camera under polarized illumination then enables standard separation of diffuse (depolarizing) and polarization preserving specular reflectance using light field sampling. We further demonstrate that the acquired data also enables novel angular separation of layered reflectance including separation of specular reflectance and single scattering in the polarization preserving component, and separation of shallow scattering from deep scattering in the depolarizing component. We apply our approach for efficient acquisition of facial reflectance including diffuse and specular normal maps, and novel separation of photometric normals into layered reflectance normals for layered facial renderings. We demonstrate our proposed single shot layered reflectance separation to be comparable to an existing multi-shot technique that relies on structured lighting while achieving separation results under a variety of illumination conditions

    Efficient generation of occlusion-aware multispectral and thermographic point clouds

    Get PDF
    The reconstruction of 3D point clouds from image datasets is a time-consuming task that has been frequently solved by performing photogrammetric techniques on every data source. This work presents an approach to efficiently build large and dense point clouds from co-acquired images. In our case study, the sensors coacquire visible as well as thermal and multispectral imagery. Hence, RGB point clouds are reconstructed with traditional methods, whereas the rest of the data sources with lower resolution and less identifiable features are projected into the first one, i.e., the most complete and dense. To this end, the mapping process is accelerated using the Graphics Processing Unit (GPU) and multi-threading in the CPU (Central Processing Unit). The accurate colour aggregation in 3D points is guaranteed by taking into account the occlusion of foreground surfaces. Accordingly, our solution is shown to reconstruct much more dense point clouds than notable commercial software (286% on average), e.g., Pix4Dmapper and Agisoft Metashape, in much less time (−70% on average with respect to the best alternative).Spanish Ministry of Science, Innovation and Universities via a doctoral grant to the first author (FPU19/00100)Project TED2021- 132120B-I00 funded by MCIN/AEI/10.13039/501100011033/ and ERDF funds ‘‘A way of doing Europe’

    Pure phase-encoded MRI and classification of solids

    Get PDF
    Here, the authors combine a pure phase-encoded magnetic resonance imaging (MRI) method with a new tissue-classification technique to make geometric models of a human tooth. They demonstrate the feasibility of three-dimensional imaging of solids using a conventional 11.7-T NMR spectrometer. In solid-state imaging, confounding line-broadening effects are typically eliminated using coherent averaging methods. Instead, the authors circumvent them by detecting the proton signal at a fixed phase-encode time following the radio-frequency excitation. By a judicious choice of the phase-encode time in the MRI protocol, the authors differentiate enamel and dentine sufficiently to successfully apply a new classification algorithm. This tissue-classification algorithm identifies the distribution of different material types, such as enamel and dentine, in volumetric data. In this algorithm, the authors treat a voxel as a volume, not as a single point, and assume that each voxel may contain more than one material. They use the distribution of MR image intensities within each voxel-sized volume to estimate the relative proportion of each material using a probabilistic approach. This combined approach, involving MRI and data classification, is directly applicable to bone imaging and hard-tissue contrast-based modeling of biological solids

    An out-of-core method for GPU image mapping on large 3D scenarios of the real world

    Get PDF
    [Abstract] Image mapping on 3D huge scenarios of the real world is one of the most fundamental and computational expensive processes for the integration of multi-source sensing data. Recent studies focused on the observation and characterization of Earth have been enhanced by the proliferation of Unmanned Aerial Vehicle (UAV) and sensors able to capture massive datasets with a high spatial resolution. Despite the advances in manufacturing new cameras and versatile platforms, only a few methods have been developed to characterize the study area by fusing heterogeneous data such as thermal, multispectral or hyperspectral images with high-resolution 3D models. The main reason for this lack of solutions is the challenge to integrate multi-scale datasets and high computational efforts required for image mapping on dense and complex geometric models. In this paper, we propose an efficient pipeline for multi-source image mapping on huge 3D scenarios. Our GPU-based solution significantly reduces the run time and allows us to generate enriched 3D models on-site. The proposed method is out-of-core and it uses available resources of the GPU’s machine to perform two main tasks: (i) image mapping and (ii) occlusion testing. We deploy highly-optimized GPU-kernels for image mapping and detection of self-hidden geometry in the 3D model, as well as a GPU-based parallelization to manage the 3D model considering several spatial partitions according to the GPU capabilities. Our method has been tested on 3D scenarios with different point cloud densities (66M, 271M, 542M) and two sets of multispectral images collected by two drone flights. We focus on launching the proposed method on three platforms: (i) System on a Chip (SoC), (ii) a user-grade laptop and (iii) a PC. The results demonstrate the method’s capabilities in terms of performance and versatility to be computed by commodity hardware. Thus, taking advantage of GPUs, this method opens the door for embedded and edge computing devices for 3D image mapping on large-scale scenarios in near real-time.This work has been partially supported through the research projects TIN2017-84968-R, PID2019-104184RB-I00 funded by MCIN/AEI/10.13039/501100011033 and ERDF funds “A way of doing Europe”, as well as by ED431C 2021/30, ED431F 2021/11 funded by Xunta de Galicia and 1381202 by Junta de AndalucíaXunta de Galicia; ED431C 2021/30Xunta de Galicia; ED431F 2021/11Junta de Andalucía; 138120

    Evaluation and improvement of the workflow of digital imaging of fine art reproduction in museums

    Get PDF
    Fine arts refer to a broad spectrum of art formats, ie~painting, calligraphy, photography, architecture, and so forth. Fine art reproductions are to create surrogates of the original artwork that are able to faithfully deliver the aesthetics and feelings of the original. Traditionally, reproductions of fine art are made in the form of catalogs, postcards or books by museums, libraries, archives, and so on (hereafter called museums for simplicity). With the widespread adoption of digital archiving in museums, more and more artwork is reproduced to be viewed on a display. For example, artwork collections are made available through museum websites and Google Art Project for art lovers to view on their own displays. In the thesis, we study the fine art reproduction of paintings in the form of soft copy viewed on displays by answering four questions: (1) what is the impact of the viewing condition and original on image quality evaluation? (2) can image quality be improved by avoiding visual editing in current workflows of fine art reproduction? (3) can lightweight spectral imaging be used for fine art reproduction? and (4) what is the performance of spectral reproductions compared with reproductions by current workflows? We started with evaluating the perceived image quality of fine art reproduction created by representative museums in the United States under controlled and uncontrolled environments with and without the presence of the original artwork. The experimental results suggest that the image quality is highly correlated with the color accuracy of the reproduction only when the original is present and the reproduction is evaluated on a characterized display. We then examined the workflows to create these reproductions, and found that current workflows rely heavily on visual editing and retouching (global and local color adjustments on the digital reproduction) to improve the color accuracy of the reproduction. Visual editing and retouching can be both time-consuming and subjective in nature (depending on experts\u27 own experience and understanding of the artwork) lowering the efficiency of artwork digitization considerably. We therefore propose to improve the workflow of fine art reproduction by (1) automating the process of visual editing and retouching in current workflows based on RGB acquisition systems and by (2) recovering the spectral reflectance of the painting with off-the-shelf equipment under commonly available lighting conditions. Finally, we studied the perceived image quality of reproductions created by current three-channel (RGB) workflows with those by spectral imaging and those based on an exemplar-based method

    Practical Measurement and Reconstruction of Spectral Skin Reflectance

    Get PDF
    We present two practical methods for measurement of spectral skin reflectance suited for live subjects, and drive a spectral BSSRDF model with appropriate complexity to match skin appearance in photographs, including human faces. Our primary measurement method employs illuminating a subject with two complementary uniform spectral illumination conditions using a multispectral LED sphere to estimate spatially varying parameters of chromophore concentrations including melanin and hemoglobin concentration, melanin blend-type fraction, and epidermal hemoglobin fraction. We demonstrate that our proposed complementary measurements enable higher-quality estimate of chromophores than those obtained using standard broadband illumination, while being suitable for integration with multiview facial capture using regular color cameras. Besides novel optimal measurements under controlled illumination, we also demonstrate how to adapt practical skin patch measurements using a hand-held dermatological skin measurement device, a Miravex Antera 3D camera, for skin appearance reconstruction and rendering. Furthermore, we introduce a novel approach for parameter estimation given the measurements using neural networks which is significantly faster than a lookup table search and avoids parameter quantization. We demonstrate high quality matches of skin appearance with photographs for a variety of skin types with our proposed practical measurement procedures, including photorealistic spectral reproduction and renderings of facial appearance
    • 

    corecore