44,154 research outputs found

    Information driven self-organization of complex robotic behaviors

    Get PDF
    Information theory is a powerful tool to express principles to drive autonomous systems because it is domain invariant and allows for an intuitive interpretation. This paper studies the use of the predictive information (PI), also called excess entropy or effective measure complexity, of the sensorimotor process as a driving force to generate behavior. We study nonlinear and nonstationary systems and introduce the time-local predicting information (TiPI) which allows us to derive exact results together with explicit update rules for the parameters of the controller in the dynamical systems framework. In this way the information principle, formulated at the level of behavior, is translated to the dynamics of the synapses. We underpin our results with a number of case studies with high-dimensional robotic systems. We show the spontaneous cooperativity in a complex physical system with decentralized control. Moreover, a jointly controlled humanoid robot develops a high behavioral variety depending on its physics and the environment it is dynamically embedded into. The behavior can be decomposed into a succession of low-dimensional modes that increasingly explore the behavior space. This is a promising way to avoid the curse of dimensionality which hinders learning systems to scale well.Comment: 29 pages, 12 figure

    Learning Interpretable Rules for Multi-label Classification

    Full text link
    Multi-label classification (MLC) is a supervised learning problem in which, contrary to standard multiclass classification, an instance can be associated with several class labels simultaneously. In this chapter, we advocate a rule-based approach to multi-label classification. Rule learning algorithms are often employed when one is not only interested in accurate predictions, but also requires an interpretable theory that can be understood, analyzed, and qualitatively evaluated by domain experts. Ideally, by revealing patterns and regularities contained in the data, a rule-based theory yields new insights in the application domain. Recently, several authors have started to investigate how rule-based models can be used for modeling multi-label data. Discussing this task in detail, we highlight some of the problems that make rule learning considerably more challenging for MLC than for conventional classification. While mainly focusing on our own previous work, we also provide a short overview of related work in this area.Comment: Preprint version. To appear in: Explainable and Interpretable Models in Computer Vision and Machine Learning. The Springer Series on Challenges in Machine Learning. Springer (2018). See http://www.ke.tu-darmstadt.de/bibtex/publications/show/3077 for further informatio

    Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks

    Full text link
    Autonomous robots need to interact with unknown, unstructured and changing environments, constantly facing novel challenges. Therefore, continuous online adaptation for lifelong-learning and the need of sample-efficient mechanisms to adapt to changes in the environment, the constraints, the tasks, or the robot itself are crucial. In this work, we propose a novel framework for probabilistic online motion planning with online adaptation based on a bio-inspired stochastic recurrent neural network. By using learning signals which mimic the intrinsic motivation signalcognitive dissonance in addition with a mental replay strategy to intensify experiences, the stochastic recurrent network can learn from few physical interactions and adapts to novel environments in seconds. We evaluate our online planning and adaptation framework on an anthropomorphic KUKA LWR arm. The rapid online adaptation is shown by learning unknown workspace constraints sample-efficiently from few physical interactions while following given way points.Comment: accepted in Neural Network

    Bayesian Dropout

    Full text link
    Dropout has recently emerged as a powerful and simple method for training neural networks preventing co-adaptation by stochastically omitting neurons. Dropout is currently not grounded in explicit modelling assumptions which so far has precluded its adoption in Bayesian modelling. Using Bayesian entropic reasoning we show that dropout can be interpreted as optimal inference under constraints. We demonstrate this on an analytically tractable regression model providing a Bayesian interpretation of its mechanism for regularizing and preventing co-adaptation as well as its connection to other Bayesian techniques. We also discuss two general approximate techniques for applying Bayesian dropout for general models, one based on an analytical approximation and the other on stochastic variational techniques. These techniques are then applied to a Baysian logistic regression problem and are shown to improve performance as the model become more misspecified. Our framework roots dropout as a theoretically justified and practical tool for statistical modelling allowing Bayesians to tap into the benefits of dropout training.Comment: 21 pages, 3 figures. Manuscript prepared 2014 and awaiting submissio

    Model Selection and Adaptive Markov chain Monte Carlo for Bayesian Cointegrated VAR model

    Full text link
    This paper develops a matrix-variate adaptive Markov chain Monte Carlo (MCMC) methodology for Bayesian Cointegrated Vector Auto Regressions (CVAR). We replace the popular approach to sampling Bayesian CVAR models, involving griddy Gibbs, with an automated efficient alternative, based on the Adaptive Metropolis algorithm of Roberts and Rosenthal, (2009). Developing the adaptive MCMC framework for Bayesian CVAR models allows for efficient estimation of posterior parameters in significantly higher dimensional CVAR series than previously possible with existing griddy Gibbs samplers. For a n-dimensional CVAR series, the matrix-variate posterior is in dimension 3n2+n3n^2 + n, with significant correlation present between the blocks of matrix random variables. We also treat the rank of the CVAR model as a random variable and perform joint inference on the rank and model parameters. This is achieved with a Bayesian posterior distribution defined over both the rank and the CVAR model parameters, and inference is made via Bayes Factor analysis of rank. Practically the adaptive sampler also aids in the development of automated Bayesian cointegration models for algorithmic trading systems considering instruments made up of several assets, such as currency baskets. Previously the literature on financial applications of CVAR trading models typically only considers pairs trading (n=2) due to the computational cost of the griddy Gibbs. We are able to extend under our adaptive framework to n>>2n >> 2 and demonstrate an example with n = 10, resulting in a posterior distribution with parameters up to dimension 310. By also considering the rank as a random quantity we can ensure our resulting trading models are able to adjust to potentially time varying market conditions in a coherent statistical framework.Comment: to appear journal Bayesian Analysi

    Predicting cortical bone adaptation to axial loading in the mouse tibia

    Get PDF
    The development of predictive mathematical models can contribute to a deeper understanding of the specific stages of bone mechanobiology and the process by which bone adapts to mechanical forces. The objective of this work was to predict, with spatial accuracy, cortical bone adaptation to mechanical load, in order to better understand the mechanical cues that might be driving adaptation. The axial tibial loading model was used to trigger cortical bone adaptation in C57BL/6 mice and provide relevant biological and biomechanical information. A method for mapping cortical thickness in the mouse tibia diaphysis was developed, allowing for a thorough spatial description of where bone adaptation occurs. Poroelastic finite-element (FE) models were used to determine the structural response of the tibia upon axial loading and interstitial fluid velocity as the mechanical stimulus. FE models were coupled with mechanobiological governing equations, which accounted for non-static loads and assumed that bone responds instantly to local mechanical cues in an on–off manner. The presented formulation was able to simulate the areas of adaptation and accurately reproduce the distributions of cortical thickening observed in the experimental data with a statistically significant positive correlation (Kendall's τ rank coefficient τ = 0.51, p < 0.001). This work demonstrates that computational models can spatially predict cortical bone mechanoadaptation to a time variant stimulus. Such models could be used in the design of more efficient loading protocols and drug therapies that target the relevant physiological mechanisms

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems

    Combining predictions from linear models when training and test inputs differ

    Get PDF
    Methods for combining predictions from different models in a supervised learning setting must somehow estimate/predict the quality of a model's predictions at unknown future inputs. Many of these methods (often implicitly) make the assumption that the test inputs are identical to the training inputs, which is seldom reasonable. By failing to take into account that prediction will generally be harder for test inputs that did not occur in the training set, this leads to the selection of too complex models. Based on a novel, unbiased expression for KL divergence, we propose XAIC and its special case FAIC as versions of AIC intended for prediction that use different degrees of knowledge of the test inputs. Both methods substantially differ from and may outperform all the known versions of AIC even when the training and test inputs are iid, and are especially useful for deterministic inputs and under covariate shift. Our experiments on linear models suggest that if the test and training inputs differ substantially, then XAIC and FAIC predictively outperform AIC, BIC and several other methods including Bayesian model averaging.Comment: 12 pages, 2 figures. To appear in Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence (UAI2014). This version includes the supplementary material (regularity assumptions, proofs
    • …
    corecore