4,633 research outputs found

    In vivo contrast free chronic myocardial infarction characterization using diffusion-weighted cardiovascular magnetic resonance.

    Get PDF
    BackgroundDespite the established role of late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) in characterizing chronic myocardial infarction (MI), a significant portion of chronic MI patients are contraindicative for the use of contrast agents. One promising alternative contrast free technique is diffusion weighted CMR (dwCMR), which has been shown ex vivo to be sensitive to myocardial fibrosis. We used a recently developed in vivo dwCMR in chronic MI pigs to compare apparent diffusion coefficient (ADC) maps with LGE imaging for infarct characterization.MethodsIn eleven mini pigs, chronic MI was induced by complete occlusion of the left anterior descending artery for 150 minutes. LGE, cine, and dwCMR imaging was performed 8 weeks post MI. ADC maps were derived from three orthogonal diffusion directions (b = 400 s/mm2) and one non-diffusion weighted image. Two semi-automatic infarct classification methods, threshold and full width half max (FWHM), were performed in both LGE and ADC maps. Regional wall motion (RWM) analysis was performed and compared to ADC maps to determine if any observed ADC change was significantly influenced by bulk motion.ResultsADC of chronic MI territories was significantly increased (threshold: 2.4 ± 0.3 μm2/ms, FWHM: 2.4 ± 0.2 μm2/ms) compared to remote myocardium (1.4 ± 0.3 μm2/ms). RWM was significantly reduced (threshold: 1.0 ± 0.4 mm, FWHM: 0.9 ± 0.4 mm) in infarcted regions delineated by ADC compared to remote myocardium (8.3 ± 0.1 mm). ADC-derived infarct volume and location had excellent agreement with LGE. Both LGE and ADC were in complete agreement when identifying transmural infarcts. Additionally, ADC was able to detect LGE-delineated infarcted segments with high sensitivity, specificity, PPV, and NPV. (threshold: 0.88, 0.93, 0.87, and 0.94, FWHM: 0.98, 0.97, 0.93, and 0.99, respectively).ConclusionsIn vivo diffusion weighted CMR has potential as a contrast free alternative for LGE in characterizing chronic MI

    Characterization of age-related microstructural changes in locus coeruleus and substantia nigra pars compacta.

    Get PDF
    Locus coeruleus (LC) and substantia nigra pars compacta (SNpc) degrade with normal aging, but not much is known regarding how these changes manifest in MRI images, or whether these markers predict aspects of cognition. Here, we use high-resolution diffusion-weighted MRI to investigate microstructural and compositional changes in LC and SNpc in young and older adult cohorts, as well as their relationship with cognition. In LC, the older cohort exhibited a significant reduction in mean and radial diffusivity, but a significant increase in fractional anisotropy compared with the young cohort. We observed a significant correlation between the decrease in LC mean, axial, and radial diffusivities and measures examining cognition (Rey Auditory Verbal Learning Test delayed recall) in the older adult cohort. This observation suggests that LC is involved in retaining cognitive abilities. In addition, we observed that iron deposition in SNpc occurs early in life and continues during normal aging

    Correcting for Motion between Acquisitions in Diffusion MR Imaging

    Get PDF
    The diffusion tensor (DT) and other diffusion models assume that each voxel corresponds to the same anatomical location in all the measurements. Movements and distortions violate this assumption and typically the images are realigned before model fitting. We propose a set of model-based methods to improve motion correction and avoid the errors that the traditional method introduces. The new methods are based on a three-step procedure to register DWI datasets, and use different reference images for DWIs with different gradient directions for registration, so the registrations take into account the contrast differences of measurements. Performance of the model-based registration techniques depends critically on outlier rejection. We develop new methods for fitting the diffusion tensor to diffusion MRI measurements in the presence of outliers by drawing on the RANSAC algorithm from computer vision. We compareone popularly used outlier rejection method RESTORE in the diffusion MRI literature with our new method. Then, we combine outlier rejection methods with model-based registration schemes, and compare the performance of motion correction with other methods. After aligning the dataset, we also update diffusion gradients for the registered datasets from both traditional and our methods, according to the transformations used in registrations. We develop and discuss a variety of registration evaluation methods using both synthetic and human-brain diffusion MRI datasets. Experiments demonstrate both quantitative and qualitative improvements using our new model-based methods

    Diffeomorphic Metric Mapping of High Angular Resolution Diffusion Imaging based on Riemannian Structure of Orientation Distribution Functions

    Full text link
    In this paper, we propose a novel large deformation diffeomorphic registration algorithm to align high angular resolution diffusion images (HARDI) characterized by orientation distribution functions (ODFs). Our proposed algorithm seeks an optimal diffeomorphism of large deformation between two ODF fields in a spatial volume domain and at the same time, locally reorients an ODF in a manner such that it remains consistent with the surrounding anatomical structure. To this end, we first review the Riemannian manifold of ODFs. We then define the reorientation of an ODF when an affine transformation is applied and subsequently, define the diffeomorphic group action to be applied on the ODF based on this reorientation. We incorporate the Riemannian metric of ODFs for quantifying the similarity of two HARDI images into a variational problem defined under the large deformation diffeomorphic metric mapping (LDDMM) framework. We finally derive the gradient of the cost function in both Riemannian spaces of diffeomorphisms and the ODFs, and present its numerical implementation. Both synthetic and real brain HARDI data are used to illustrate the performance of our registration algorithm
    corecore