6,318 research outputs found

    Individual-based modeling and predictive simulation of fungal infection dynamics

    Get PDF
    The human-pathogenic fungus Aspergillus fumigatus causes life-threatening infections in immunocompromised patients and poses increasing challenges for the modern medicine. A. fumigatus is ubiquitously present and disseminates via small conidia over the air of the athmosphere. Each human inhales several hundreds to thousands of conidia every day. The small size of conidia allows them to pass into the alveoli of the lung, where primary infections with A. fumigatus are typically observed. In alveoli, the interaction between fungi and the innate immune system of the host takes place. This interaction is the core topic of this thesis and covered by mathematical modeling and computer simulations. Since in vivo laboratory studies of A. fumigatus infections under physiological conditions is hard to realize a modular software framework was developed and implemented, which allows for spatio-temporal agent-based modeling and simulation. A to-scale A. fumigatus infection model in a typical human alveolus was developed in order to simulate and analyze the infection scenario under physiological conditions. The process of conidial discovery by alveolar macrophages was modeled and simulated with different migration modes and different parameter configurations. It could be shown that chemotactic migration was required to find the pathogen before the onset of germination. A second model took advantage of evolutionary game theory on graphs. Here, the course of infection was modeled as a consecutive sequence of evolutionary games related to the complement system, alveolar macrophages and polymorphonuclear neutrophilic granulocytes. The results revealed a central immunoregulatory role of alveolar macrophages. In the case of high infectious doses it was found that the host required fully active phagocytes, but in particular a qualitative response of quantitatively sufficient polymorphonuclear neutrophilic granulocytes.Der human-pathogene Schimmelpilz Aspergillus fumigatus verursacht tödliche Infektionen und Erkrankungen vorrangig bei immunsupprimierten Patienten und stellt die moderne Medizin vor zunehmende Herausforderungen. A. fumigatus ist ubiquitär präsent und verbreitet sich über sehr kleine Konidien durch Luftströmungen in der Athmosphäre. Mehrere Hundert bis Tausende dieser Konidien werden täglich durch jeden Menschen eingeatmet. Die geringe Größe der infektiösen Konidien erlauben es dem Pilz bis in die Alveolen der Lunge des Wirtes vorzudringen,in denen eine Primärinfektionen mit A. fumigatus am häufigsten stattfindet. Die Alveolen sind der zentrale Schauplatz der Interaktion zwischen dem Pilz und dem angeborenen Immunsystem, welche Gegenstand dieser Arbeit ist. Diese Interaktion wird mit Hilfe von mathematischen Modellen und Computersimulationen nachgestellt und untersucht, da eine A. fumigatus Infektion im Nasslabor in vivo unter physiologischen Bedingungen nur sehr schwer realisiert werden kann. Als Grundlage für dieses Vorhaben wurde ein modulares Software-Paket entwickelt, welches agentenbasierte Modellierung und entsprechende Simulationen in Raum und Zeit ermöglicht. Ein maßstabsgetreues mathematisches Infektionsmodell in einer typischen menschlichen Alveole wurde entwickelt und die Suchstrategien von Alveolarmakrophagen unter der Berücksichtigung verschiedener Parameter wie Migrationsgeschwindigkeit, dem Vorhandensein von Chemokinen, dessen Diffusion und Chemotaxis untersucht. Es zeigte sich, dass Chemotaxis, notwendig ist, um die Konidie rechtzeitig finden zu können. In einem weiteren Modell, welches auf das Konzept evolutionärer Spieltheorie auf Graphen zurückgegriff, wurde der Infektionsverlauf als aufeinanderfolgende Serie evolutionärer Spiele mit dem Komplementsystem, Alveolarmakrophagen und Neutrophilen nachgestellt. Aus den Simulationsergebnissen konnte eine zentrale immunregulatorische Rolle von Alveolarmakrophagen entnommen werden

    A proposed integrated approach for the preclinical evaluation of phage therapy in Pseudomonas infections

    Get PDF
    Bacteriophage therapy is currently resurging as a potential complement/alternative to antibiotic treatment. However, preclinical evaluation lacks streamlined approaches. We here focus on preclinical approaches which have been implemented to assess bacteriophage efficacy against Pseudomonas biofilms and infections. Laser interferometry and profilometry were applied to measure biofilm matrix permeability and surface geometry changes, respectively. These biophysical approaches were combined with an advanced Airway Surface Liquid infection model, which mimics in vitro the normal and CF lung environments, and an in vivo Galleria larvae model. These assays have been implemented to analyze KTN4 (279,593 bp dsDNA genome), a type-IV pili dependent, giant phage resembling phiKZ. Upon contact, KTN4 immediately disrupts the P. aeruginosa PAO1 biofilm and reduces pyocyanin and siderophore production. The gentamicin exclusion assay on NuLi-1 and CuFi-1 cell lines revealed the decrease of extracellular bacterial load between 4 and 7 logs and successfully prevents wild-type Pseudomonas internalization into CF epithelial cells. These properties and the significant rescue of Galleria larvae indicate that giant KTN4 phage is a suitable candidate for in vivo phage therapy evaluation for lung infection applications

    Systems Biology of Fungal Infection

    Get PDF
    Elucidation of pathogenicity mechanisms of the most important human-pathogenic fungi, Aspergillus fumigatus and Candida albicans, has gained great interest in the light of the steadily increasing number of cases of invasive fungal infections. A key feature of these infections is the interaction of the different fungal morphotypes with epithelial and immune effector cells in the human host. Because of the high level of complexity, it is necessary to describe and understand invasive fungal infection by taking a systems biological approach, i.e., by a comprehensive quantitative analysis of the non-linear and selective interactions of a large number of functionally diverse, and frequently multifunctional, sets of elements, e.g., genes, proteins, metabolites, which produce coherent and emergent behaviors in time and space. The recent advances in systems biology will now make it possible to uncover the structure and dynamics of molecular and cellular cause-effect relationships within these pathogenic interactions. We review current efforts to integrate omics and image-based data of host-pathogen interactions into network and spatio-temporal models. The modeling will help to elucidate pathogenicity mechanisms and to identify diagnostic biomarkers and potential drug targets for therapy and could thus pave the way for novel intervention strategies based on novel antifungal drugs and cell therapy

    Marine infectious disease dynamics and outbreak thresholds: contact transmission, pandemic infection, and the potential role of filter feeders

    Get PDF
    Disease-causing organisms can have significant impacts on marine species and communities. However, the dynamics that underlie the emergence of disease outbreaks in marine ecosystems still lack the equivalent level of description, conceptual understanding, and modeling context routinely present in the terrestrial systems. Here, we propose a theoretical basis for modeling the transmission of marine infectious diseases (MIDs) developed from simple models of the spread of infectious disease. The models represent the dynamics of a variety of host–pathogen systems including those unique to marine systems where transmission of disease is by contact with waterborne pathogens both directly and through filter-feeding processes. Overall, the analysis of the epizootiological models focused on the most relevant processes that interact to drive the initiation and termination of epizootics. A priori, systems with multi-step disease infections (e.g., infection-death-particle release-filtration-transmission) reduced dependence on individual parameters resulting in inherently slower transmissions rates. This is demonstrably not the case; thus, these alternative transmission pathways must also considerably increase the rates of processes involved in transmission. Scavengers removing dead infected animals may inhibit disease spread in both contact-based and waterborne pathogen-based diseases. The capacity of highly infected animals, both alive and dead, to release a substantial number of infective elements into the water column, making them available to suspension feeders results in such diseases being highly infective with a very small “low-abundance refuge”. In these systems, the body burden of pathogens and the relative importance between the release and the removal rate of pathogens in the host tissue or water column becomes paramount. Two processes are of potential consequence inhibiting epizootics. First, large water volumes above the benthic susceptible populations can function as a sink for pathogens. Second, unlike contact-based disease models in which an increase in the number of susceptible individuals in the population increases the likelihood of transmission and epizootic development, large populations of filter feeders can reduce this likelihood through the overfiltration of infective particles.This investigation was funded by the NSF Evolution and Ecology of Infectious Diseases (EEID) Program Grant # OCE-1216220. We appreciate this support

    Marine Infectious Disease Dynamics and Outbreak Thresholds: Contact Transmission, Pandemic Infection, and the Potential Role of Filter Feeders

    Get PDF
    Disease-causing organisms can have significant impacts on marine species and communities. However, the dynamics that underlie the emergence of disease outbreaks in marine ecosystems still lack the equivalent level of description, conceptual understanding, and modeling context routinely present in the terrestrial systems. Here, we propose a theoretical basis for modeling the transmission of marine infectious diseases (MIDs) developed from simple models of the spread of infectious disease. The models represent the dynamics of a variety of host-pathogen systems including those unique to marine systems where transmission of disease is by contact with waterborne pathogens both directly and through filter-feeding processes. Overall, the analysis of the epizootiological models focused on the most relevant processes that interact to drive the initiation and termination of epizootics. A priori, systems with multi-step disease infections (e.g., infection-death-particle release-filtration-transmission) reduced dependence on individual parameters resulting in inherently slower transmissions rates. This is demonstrably not the case; thus, these alternative transmission pathways must also considerably increase the rates of processes involved in transmission. Scavengers removing dead infected animals may inhibit disease spread in both contact-based and waterborne pathogen-based diseases. The capacity of highly infected animals, both alive and dead, to release a substantial number of infective elements into the water column, making them available to suspension feeders results in such diseases being highly infective with a very small low-abundance refuge . In these systems, the body burden of pathogens and the relative importance between the release and the removal rate of pathogens in the host tissue or water column becomes paramount. Two processes are of potential consequence inhibiting epizootics. First, large water volumes above the benthic susceptible populations can function as a sink for pathogens. Second, unlike contact-based disease models in which an increase in the number of susceptible individuals in the population increases the likelihood of transmission and epizootic development, large populations of filter feeders can reduce this likelihood through the overfiltration of infective particles

    2015 Conference Abstracts: Annual Undergraduate Research Conference at the Interface of Biology and Mathematics

    Get PDF
    Schedule and abstract book for the Seventh Annual Undergraduate Research Conference at the Interface of Biology and Mathematics Date: November 21-22, 2015Plenary speaker: Robert Smith, University of OttawaFeatured speaker: Rachel Lenhart, University of Wisconsin, Madiso

    Virtual infection modeling for Aspergillus fumigatus in human and murine alveoli

    Get PDF
    Der Der filamentöse pathogene Pilz Aspergillus fumigatus kann schwere Infektionen wie die invasive pulmonale Aspergillose in immungeschwächten Patienten verursachen. Verbunden mit einer hohen Mortalität und einer steigenden Inzidenz der letzten Jahrzehnte bezeugt dies die Notwendigkeit zur Erforschung seines opportunistischen Verhaltens sowie zur Entwicklung effizienter Behandlungsstrategien, um Menschenleben zu retten. Da die Lunge, als primäres Ziel von A. fumigatus Infektionen, nur begrenzt experimentell in vivo studiert werden kann, verfolgt diese Arbeit den Ansatz agenten-basierter Simulation. Die kumulative Dissertation basiert auf 4 veröffentlichten Manuskripten. Untersucht wurden dabei die Vergleichbarkeit von natürlichen Infektionen im Menschen und künstlichen Infektionen im etablierten Mausmodell. Eine zweite Veröffentlichung untersucht den Einfluss von Kohn'schen Poren auf die Dynamik der Immunabwehr gegen Aspergillus fumigatus. Eine dritte Veröffentlichung untersucht die Anwendbarkeit von dynamischen Kugeloberflächenfunktionen - Spherical Harmonics - als Werkzeug der Klassifikation und Beschreibung von beweglichen Zellen. Die vierte Veröffentlichung präsentiert erstmals einen Aspergillose Chip auf Mikrofluidikchips. Dies erlaubt es, die Pathogen-Wirt-Beziehungen unter realistischen Bedingungen zu untersuchen sowie das Wachstum der Pilzhyphen zu quantifizieren

    Modelling the Composition and Structure of Campylobacter jejuni Biofilms

    Get PDF
    The goal of this research project was to study the effects of environmental and genetic factors on biofilm formation of Campylobacter jejuni with the use of mathematical modelling, experimental and bioinformatics techniques. Potential reasons for some puzzling observations regarding C. jejuni biofilm formation have been proposed as a result of this study, and a number of genes and SNPs have been identified, which may play a role in biofilm formation of this pathogen
    corecore