141 research outputs found

    Image segmentation and reconstruction of 3D surfaces from carotid ultrasound images

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    Multiple 2D self organising map network for surface reconstruction of 3D unstructured data

    Get PDF
    Surface reconstruction is a challenging task in reverse engineering because it must represent the surface which is similar to the original object based on the data obtained. The data obtained are mostly in unstructured type whereby there is not enough information and incorrect surface will be obtained. Therefore, the data should be reorganised by finding the correct topology with minimum surface error. Previous studies showed that Self Organising Map (SOM) model, the conventional surface approximation approach with Non Uniform Rational B-Splines (NURBS) surfaces, and optimisation methods such as Genetic Algorithm (GA), Differential Evolution (DE) and Particle Swarm Optimisation (PSO) methods are widely implemented in solving the surface reconstruction. However, the model, approach and optimisation methods are still suffer from the unstructured data and accuracy problems. Therefore, the aims of this research are to propose Cube SOM (CSOM) model with multiple 2D SOM network in organising the unstructured surface data, and to propose optimised surface approximation approach in generating the NURBS surfaces. GA, DE and PSO methods are implemented to minimise the surface error by adjusting the NURBS control points. In order to test and validate the proposed model and approach, four primitive objects data and one medical image data are used. As to evaluate the performance of the proposed model and approach, three performance measurements have been used: Average Quantisation Error (AQE) and Number Of Vertices (NOV) for the CSOM model while surface error for the proposed optimised surface approximation approach. The accuracy of AQE for CSOM model has been improved to 64% and 66% when compared to 2D and 3D SOM respectively. The NOV for CSOM model has been reduced from 8000 to 2168 as compared to 3D SOM. The accuracy of surface error for the optimised surface approximation approach has been improved to 7% compared to the conventional approach. The proposed CSOM model and optimised surface approximation approach have successfully reconstructed surface of all five data with better performance based on three performance measurements used in the evaluation

    Integration between Creativity and Engineering in Industrial Design

    Get PDF
    The objective of the paper is to illustrate which are the key issues today in the industrial design workflow, paying particular attention to the most creative part of the workflow, highlighting those nodes which still make hard the styling activities and giving a brief survey of the researches aimed at smoothing the transfer of the design intent along the whole design cycle and at providing tools even more adhering at the mentality of creative people. Based on the experience gained working in two different European projects, through the collaboration with industrial designers in the automotive and the household supplies fields, a general industrial design workflow will be depicted, highlighting the main differences between the automotive and non-automotive sectors; the problems still present in the design activity will be also illustrated. The paper includes short surveys, in relation to the aesthetic design, in matter of research activities aimed at - identifying the links between shape characteristics of a product and the transmitted emotions - better supporting, in a digital way, the 2D sketching phase and the automatic interpretation and transfer of the 2D sketches into a 3D surface model - improving the 3D Modeling phase

    Novel 3D Ultrasound Elastography Techniques for In Vivo Breast Tumor Imaging and Nonlinear Characterization

    Get PDF
    Breast cancer comprises about 29% of all types of cancer in women worldwide. This type of cancer caused what is equivalent to 14% of all female deaths due to cancer. Nowadays, tissue biopsy is routinely performed, although about 80% of the performed biopsies yield a benign result. Biopsy is considered the most costly part of breast cancer examination and invasive in nature. To reduce unnecessary biopsy procedures and achieve early diagnosis, ultrasound elastography was proposed.;In this research, tissue displacement fields were estimated using ultrasound waves, and used to infer the elastic properties of tissues. Ultrasound radiofrequency data acquired at consecutive increments of tissue compression were used to compute local tissue strains using a cross correlation method. In vitro and in vivo experiments were conducted on different tissue types to demonstrate the ability to construct 2D and 3D elastography that helps distinguish stiff from soft tissues. Based on the constructed strain volumes, a novel nonlinear classification method for human breast tumors is introduced. Multi-compression elastography imaging is elucidated in this study to differentiate malignant from benign tumors, based on their nonlinear mechanical behavior under compression. A pilot study on ten patients was performed in vivo, and classification results were compared with biopsy diagnosis - the gold standard. Various nonlinear parameters based on different models, were evaluated and compared with two commonly used parameters; relative stiffness and relative tumor size. Moreover, different types of strain components were constructed in 3D for strain imaging, including normal axial, first principal, maximum shear and Von Mises strains. Interactive segmentation algorithms were also evaluated and applied on the constructed volumes, to delineate the stiff tissue by showing its isolated 3D shape.;Elastography 3D imaging results were in good agreement with the biopsy outcomes, where the new classification method showed a degree of discrepancy between benign and malignant tumors better than the commonly used parameters. The results show that the nonlinear parameters were found to be statistically significant with p-value \u3c0.05. Moreover, one parameter; power-law exponent, was highly statistically significant having p-value \u3c 0.001. Additionally, volumetric strain images reconstructed using the maximum shear strains provided an enhanced tumor\u27s boundary from the surrounding soft tissues. This edge enhancement improved the overall segmentation performance, and diminished the boundary leakage effect. 3D segmentation provided an additional reliable means to determine the tumor\u27s size by estimating its volume.;In summary, the proposed elastographic techniques can help predetermine the tumor\u27s type, shape and size that are considered key features helping the physician to decide the sort and extent of the treatment. The methods can also be extended to diagnose other types of tumors, such as prostate and cervical tumors. This research is aimed toward the development of a novel \u27virtual biopsy\u27 method that may reduce the number of unnecessary painful biopsies, and diminish the increasingly risk of cancer

    Stereoscopic Sketchpad: 3D Digital Ink

    Get PDF
    --Context-- This project looked at the development of a stereoscopic 3D environment in which a user is able to draw freely in all three dimensions. The main focus was on the storage and manipulation of the ‘digital ink’ with which the user draws. For a drawing and sketching package to be effective it must not only have an easy to use user interface, it must be able to handle all input data quickly and efficiently so that the user is able to focus fully on their drawing. --Background-- When it comes to sketching in three dimensions the majority of applications currently available rely on vector based drawing methods. This is primarily because the applications are designed to take a users two dimensional input and transform this into a three dimensional model. Having the sketch represented as vectors makes it simpler for the program to act upon its geometry and thus convert it to a model. There are a number of methods to achieve this aim including Gesture Based Modelling, Reconstruction and Blobby Inflation. Other vector based applications focus on the creation of curves allowing the user to draw within or on existing 3D models. They also allow the user to create wire frame type models. These stroke based applications bring the user closer to traditional sketching rather than the more structured modelling methods detailed. While at present the field is inundated with vector based applications mainly focused upon sketch-based modelling there are significantly less voxel based applications. The majority of these applications focus on the deformation and sculpting of voxmaps, almost the opposite of drawing and sketching, and the creation of three dimensional voxmaps from standard two dimensional pixmaps. How to actually sketch freely within a scene represented by a voxmap has rarely been explored. This comes as a surprise when so many of the standard 2D drawing programs in use today are pixel based. --Method-- As part of this project a simple three dimensional drawing program was designed and implemented using C and C++. This tool is known as Sketch3D and was created using a Model View Controller (MVC) architecture. Due to the modular nature of Sketch3Ds system architecture it is possible to plug a range of different data structures into the program to represent the ink in a variety of ways. A series of data structures have been implemented and were tested for efficiency. These structures were a simple list, a 3D array, and an octree. They have been tested for: the time it takes to insert or remove points from the structure; how easy it is to manipulate points once they are stored; and also how the number of points stored effects the draw and rendering times. One of the key issues brought up by this project was devising a means by which a user is able to draw in three dimensions while using only two dimensional input devices. The method settled upon and implemented involves using the mouse or a digital pen to sketch as one would in a standard 2D drawing package but also linking the up and down keyboard keys to the current depth. This allows the user to move in and out of the scene as they draw. A couple of user interface tools were also developed to assist the user. A 3D cursor was implemented and also a toggle, which when on, highlights all of the points intersecting the depth plane on which the cursor currently resides. These tools allow the user to see exactly where they are drawing in relation to previously drawn lines. --Results-- The tests conducted on the data structures clearly revealed that the octree was the most effective data structure. While not the most efficient in every area, it manages to avoid the major pitfalls of the other structures. The list was extremely quick to render and draw to the screen but suffered severely when it comes to finding and manipulating points already stored. In contrast the three dimensional array was able to erase or manipulate points effectively while the draw time rendered the structure effectively useless, taking huge amounts of time to draw each frame. The focus of this research was on how a 3D sketching package would go about storing and accessing the digital ink. This is just a basis for further research in this area and many issues touched upon in this paper will require a more in depth analysis. The primary area of this future research would be the creation of an effective user interface and the introduction of regular sketching package features such as the saving and loading of images

    Foetal echocardiographic segmentation

    Get PDF
    Congenital heart disease affects just under one percentage of all live births [1]. Those defects that manifest themselves as changes to the cardiac chamber volumes are the motivation for the research presented in this thesis. Blood volume measurements in vivo require delineation of the cardiac chambers and manual tracing of foetal cardiac chambers is very time consuming and operator dependent. This thesis presents a multi region based level set snake deformable model applied in both 2D and 3D which can automatically adapt to some extent towards ultrasound noise such as attenuation, speckle and partial occlusion artefacts. The algorithm presented is named Mumford Shah Sarti Collision Detection (MSSCD). The level set methods presented in this thesis have an optional shape prior term for constraining the segmentation by a template registered to the image in the presence of shadowing and heavy noise. When applied to real data in the absence of the template the MSSCD algorithm is initialised from seed primitives placed at the centre of each cardiac chamber. The voxel statistics inside the chamber is determined before evolution. The MSSCD stops at open boundaries between two chambers as the two approaching level set fronts meet. This has significance when determining volumes for all cardiac compartments since cardiac indices assume that each chamber is treated in isolation. Comparison of the segmentation results from the implemented snakes including a previous level set method in the foetal cardiac literature show that in both 2D and 3D on both real and synthetic data, the MSSCD formulation is better suited to these types of data. All the algorithms tested in this thesis are within 2mm error to manually traced segmentation of the foetal cardiac datasets. This corresponds to less than 10% of the length of a foetal heart. In addition to comparison with manual tracings all the amorphous deformable model segmentations in this thesis are validated using a physical phantom. The volume estimation of the phantom by the MSSCD segmentation is to within 13% of the physically determined volume
    corecore