3,975 research outputs found

    Error Correcting Coding for a Non-symmetric Ternary Channel

    Full text link
    Ternary channels can be used to model the behavior of some memory devices, where information is stored in three different levels. In this paper, error correcting coding for a ternary channel where some of the error transitions are not allowed, is considered. The resulting channel is non-symmetric, therefore classical linear codes are not optimal for this channel. We define the maximum-likelihood (ML) decoding rule for ternary codes over this channel and show that it is complex to compute, since it depends on the channel error probability. A simpler alternative decoding rule which depends only on code properties, called \da-decoding, is then proposed. It is shown that \da-decoding and ML decoding are equivalent, i.e., \da-decoding is optimal, under certain conditions. Assuming \da-decoding, we characterize the error correcting capabilities of ternary codes over the non-symmetric ternary channel. We also derive an upper bound and a constructive lower bound on the size of codes, given the code length and the minimum distance. The results arising from the constructive lower bound are then compared, for short sizes, to optimal codes (in terms of code size) found by a clique-based search. It is shown that the proposed construction method gives good codes, and that in some cases the codes are optimal.Comment: Submitted to IEEE Transactions on Information Theory. Part of this work was presented at the Information Theory and Applications Workshop 200

    The map equation

    Full text link
    Many real-world networks are so large that we must simplify their structure before we can extract useful information about the systems they represent. As the tools for doing these simplifications proliferate within the network literature, researchers would benefit from some guidelines about which of the so-called community detection algorithms are most appropriate for the structures they are studying and the questions they are asking. Here we show that different methods highlight different aspects of a network's structure and that the the sort of information that we seek to extract about the system must guide us in our decision. For example, many community detection algorithms, including the popular modularity maximization approach, infer module assignments from an underlying model of the network formation process. However, we are not always as interested in how a system's network structure was formed, as we are in how a network's extant structure influences the system's behavior. To see how structure influences current behavior, we will recognize that links in a network induce movement across the network and result in system-wide interdependence. In doing so, we explicitly acknowledge that most networks carry flow. To highlight and simplify the network structure with respect to this flow, we use the map equation. We present an intuitive derivation of this flow-based and information-theoretic method and provide an interactive on-line application that anyone can use to explore the mechanics of the map equation. We also describe an algorithm and provide source code to efficiently decompose large weighted and directed networks based on the map equation.Comment: 9 pages and 3 figures, corrected typos. For associated Flash application, see http://www.tp.umu.se/~rosvall/livemod/mapequation

    Refined Upper Bounds on Stopping Redundancy of Binary Linear Codes

    Full text link
    The ll-th stopping redundancy ρl(C)\rho_l(\mathcal C) of the binary [n,k,d][n, k, d] code C\mathcal C, 1≀l≀d1 \le l \le d, is defined as the minimum number of rows in the parity-check matrix of C\mathcal C, such that the smallest stopping set is of size at least ll. The stopping redundancy ρ(C)\rho(\mathcal C) is defined as ρd(C)\rho_d(\mathcal C). In this work, we improve on the probabilistic analysis of stopping redundancy, proposed by Han, Siegel and Vardy, which yields the best bounds known today. In our approach, we judiciously select the first few rows in the parity-check matrix, and then continue with the probabilistic method. By using similar techniques, we improve also on the best known bounds on ρl(C)\rho_l(\mathcal C), for 1≀l≀d1 \le l \le d. Our approach is compared to the existing methods by numerical computations.Comment: 5 pages; ITW 201
    • 

    corecore