10,529 research outputs found

    Development of Flame Retardant and Antibacterial Dual Functionalised Flexible Polyurethane Foam

    Full text link
    Flexible Polyurethane foam (PUF), with its unique properties, such as lightweight and softness, has been utilised extensively. Nevertheless, owing to the intrinsic high flammability and low ignition temperature, PUF-associated fire risks are always a concern. During PUF’s combustion, excessive heat and toxic gases can be generated, threatening the health and life of human beings and causing huge property loss. Consequently, improving the flame retardancy of the PUF is of importance. Later, the global COVID-19 pandemic broke out in 2019, leading to the public’s increased awareness of maintaining good hygiene conditions. Since PUF products are frequently in contact with humans daily, rendering the PUF with bacterial-killing properties should also be addressed. This dissertation delivers studies on introducing flame retardancy to the PUF via a surface engineering method named the layer-by-layer (LbL) assembly. Due to the consequent COVID-19 situation, this thesis expands the investigations to endow the PUF with antibacterial performances. Preliminary research on fabricating a newly emerged two-dimensional material called MXene (Ti3C2) and chitosan (CH) as flame retardants (FRs) to impart fire safety performances to the PUF was conducted. With only 6.9 wt.% mass added to the PUF, unprecedented fire resistance and smoke suppression properties were received. It was revealed that the FR mechanism was ascribed to the hybrid coating’s excellent barrier and carbonisation effects. Further investigations on improving the PUFs’ biodegradability identified synergistic effects between the MXene with the CH and phytic acid, demonstrating the great potential for reducing the toxicity and improving the eco-friendliness of the PUFs. Additionally, this thesis analysed the FR and antibacterial dual-functionalised PUFs. The synthesised MXene, CH, and silver ion hybridised coating endows the foam with exceptional bactericidal properties with decreases of 99.7 % in gram-negative bacteria and 88.9 % in gram-positive bacteria compared with the unmodified counterpart. Excellent flame retardancy possessed by the dual-functionalised PUFs was discovered. The compatibility of the two functional coatings was evaluated and confirmed. The results manifest the great potential for eradicating the fire risks of PUFs and providing traditional PUF products with antibacterial properties, further expanding PUF’s applications

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    An empirical investigation of the relationship between integration, dynamic capabilities and performance in supply chains

    Get PDF
    This research aimed to develop an empirical understanding of the relationships between integration, dynamic capabilities and performance in the supply chain domain, based on which, two conceptual frameworks were constructed to advance the field. The core motivation for the research was that, at the stage of writing the thesis, the combined relationship between the three concepts had not yet been examined, although their interrelationships have been studied individually. To achieve this aim, deductive and inductive reasoning logics were utilised to guide the qualitative study, which was undertaken via multiple case studies to investigate lines of enquiry that would address the research questions formulated. This is consistent with the author’s philosophical adoption of the ontology of relativism and the epistemology of constructionism, which was considered appropriate to address the research questions. Empirical data and evidence were collected, and various triangulation techniques were employed to ensure their credibility. Some key features of grounded theory coding techniques were drawn upon for data coding and analysis, generating two levels of findings. These revealed that whilst integration and dynamic capabilities were crucial in improving performance, the performance also informed the former. This reflects a cyclical and iterative approach rather than one purely based on linearity. Adopting a holistic approach towards the relationship was key in producing complementary strategies that can deliver sustainable supply chain performance. The research makes theoretical, methodological and practical contributions to the field of supply chain management. The theoretical contribution includes the development of two emerging conceptual frameworks at the micro and macro levels. The former provides greater specificity, as it allows meta-analytic evaluation of the three concepts and their dimensions, providing a detailed insight into their correlations. The latter gives a holistic view of their relationships and how they are connected, reflecting a middle-range theory that bridges theory and practice. The methodological contribution lies in presenting models that address gaps associated with the inconsistent use of terminologies in philosophical assumptions, and lack of rigor in deploying case study research methods. In terms of its practical contribution, this research offers insights that practitioners could adopt to enhance their performance. They can do so without necessarily having to forgo certain desired outcomes using targeted integrative strategies and drawing on their dynamic capabilities

    Meso-scale FDM material layout design strategies under manufacturability constraints and fracture conditions

    Get PDF
    In the manufacturability-driven design (MDD) perspective, manufacturability of the product or system is the most important of the design requirements. In addition to being able to ensure that complex designs (e.g., topology optimization) are manufacturable with a given process or process family, MDD also helps mechanical designers to take advantage of unique process-material effects generated during manufacturing. One of the most recognizable examples of this comes from the scanning-type family of additive manufacturing (AM) processes; the most notable and familiar member of this family is the fused deposition modeling (FDM) or fused filament fabrication (FFF) process. This process works by selectively depositing uniform, approximately isotropic beads or elements of molten thermoplastic material (typically structural engineering plastics) in a series of pre-specified traces to build each layer of the part. There are many interesting 2-D and 3-D mechanical design problems that can be explored by designing the layout of these elements. The resulting structured, hierarchical material (which is both manufacturable and customized layer-by-layer within the limits of the process and material) can be defined as a manufacturing process-driven structured material (MPDSM). This dissertation explores several practical methods for designing these element layouts for 2-D and 3-D meso-scale mechanical problems, focusing ultimately on design-for-fracture. Three different fracture conditions are explored: (1) cases where a crack must be prevented or stopped, (2) cases where the crack must be encouraged or accelerated, and (3) cases where cracks must grow in a simple pre-determined pattern. Several new design tools, including a mapping method for the FDM manufacturability constraints, three major literature reviews, the collection, organization, and analysis of several large (qualitative and quantitative) multi-scale datasets on the fracture behavior of FDM-processed materials, some new experimental equipment, and the refinement of a fast and simple g-code generator based on commercially-available software, were developed and refined to support the design of MPDSMs under fracture conditions. The refined design method and rules were experimentally validated using a series of case studies (involving both design and physical testing of the designs) at the end of the dissertation. Finally, a simple design guide for practicing engineers who are not experts in advanced solid mechanics nor process-tailored materials was developed from the results of this project.U of I OnlyAuthor's request

    KYT2022 Finnish Research Programme on Nuclear Waste Management 2019–2022 : Final Report

    Get PDF
    KYT2022 (Finnish Research Programme on Nuclear Waste Management 2019–2022), organised by the Ministry of Economic Affairs and Employment, was a national research programme with the objective to ensure that the authorities have sufficient levels of nuclear expertise and preparedness that are needed for safety of nuclear waste management. The starting point for public research programs on nuclear safety is that they create the conditions for maintaining the knowledge required for the continued safe and economic use of nuclear energy, developing new know-how and participating in international collaboration. The content of the KYT2022 research programme was composed of nationally important research topics, which are the safety, feasibility and acceptability of nuclear waste management. KYT2022 research programme also functioned as a discussion and information-sharing forum for the authorities, those responsible for nuclear waste management and the research organizations, which helped to make use of the limited research resources. The programme aimed to develop national research infrastructure, ensure the continuing availability of expertise, produce high-level scientific research and increase general knowledge of nuclear waste management

    Knowledge-based Modelling of Additive Manufacturing for Sustainability Performance Analysis and Decision Making

    Get PDF
    Additiivista valmistusta on pidetty käyttökelpoisena monimutkaisissa geometrioissa, topologisesti optimoiduissa kappaleissa ja kappaleissa joita on muuten vaikea valmistaa perinteisillä valmistusprosesseilla. Eduista huolimatta, yksi additiivisen valmistuksen vallitsevista haasteista on ollut heikko kyky tuottaa toimivia osia kilpailukykyisillä tuotantomäärillä perinteisen valmistuksen kanssa. Mallintaminen ja simulointi ovat tehokkaita työkaluja, jotka voivat auttaa lyhentämään suunnittelun, rakentamisen ja testauksen sykliä mahdollistamalla erilaisten tuotesuunnitelmien ja prosessiskenaarioiden nopean analyysin. Perinteisten ja edistyneiden valmistusteknologioiden mahdollisuudet ja rajoitukset määrittelevät kuitenkin rajat uusille tuotekehityksille. Siksi on tärkeää, että suunnittelijoilla on käytettävissään menetelmät ja työkalut, joiden avulla he voivat mallintaa ja simuloida tuotteen suorituskykyä ja siihen liittyvän valmistusprosessin suorituskykyä, toimivien korkea arvoisten tuotteiden toteuttamiseksi. Motivaation tämän väitöstutkimuksen tekemiselle on, meneillään oleva kehitystyö uudenlaisen korkean lämpötilan suprajohtavan (high temperature superconducting (HTS)) magneettikokoonpanon kehittämisessä, joka toimii kryogeenisissä lämpötiloissa. Sen monimutkaisuus edellyttää monitieteisen asiantuntemuksen lähentymistä suunnittelun ja prototyyppien valmistuksen aikana. Tutkimus hyödyntää tietopohjaista mallinnusta valmistusprosessin analysoinnin ja päätöksenteon apuna HTS-magneettien mekaanisten komponenttien suunnittelussa. Tämän lisäksi, tutkimus etsii mahdollisuuksia additiivisen valmistuksen toteutettavuuteen HTS-magneettikokoonpanon tuotannossa. Kehitetty lähestymistapa käyttää fysikaalisiin kokeisiin perustuvaa tuote-prosessi-integroitua mallinnusta tuottamaan kvantitatiivista ja laadullista tietoa, joka määrittelee prosessi-rakenne-ominaisuus-suorituskyky-vuorovaikutuksia tietyille materiaali-prosessi-yhdistelmille. Tuloksina saadut vuorovaikutukset integroidaan kaaviopohjaiseen malliin, joka voi auttaa suunnittelutilan tutkimisessa ja täten auttaa varhaisessa suunnittelu- ja valmistuspäätöksenteossa. Tätä varten testikomponentit valmistetaan käyttämällä kahta metallin additiivista valmistus prosessia: lankakaarihitsaus additiivista valmistusta (wire arc additive manufacturing) ja selektiivistä lasersulatusta (selective laser melting). Rakenteellisissa sovelluksissa yleisesti käytetyistä metalliseoksista (ruostumaton teräs, pehmeä teräs, luja niukkaseosteinen teräs, alumiini ja kupariseokset) testataan niiden mekaaniset, lämpö- ja sähköiset ominaisuudet. Lisäksi tehdään metalliseosten mikrorakenteen karakterisointi, jotta voidaan ymmärtää paremmin valmistusprosessin parametrien vaikutusta materiaalin ominaisuuksiin. Integroitu mallinnustapa yhdistää kerätyn kokeellisen tiedon, olemassa olevat analyyttiset ja empiiriset vuorovaikutus suhteet, sekä muut tietopohjaiset mallit (esim. elementtimallit, koneoppimismallit) päätöksenteon tukijärjestelmän muodossa, joka mahdollistaa optimaalisen materiaalin, valmistustekniikan, prosessiparametrien ja muitten ohjausmuuttujien valinnan, lopullisen 3d-tulosteun komponentin halutun rakenteen, ominaisuuksien ja suorituskyvyn saavuttamiseksi. Valmistuspäätöksenteko tapahtuu todennäköisyysmallin, eli Bayesin verkkomallin toteuttamisen kautta, joka on vankka, modulaarinen ja sovellettavissa muihin valmistusjärjestelmiin ja tuotesuunnitelmiin. Väitöstyössä esitetyn mallin kyky parantaa additiivisien valmistusprosessien suorituskykyä ja laatua, täten edistää kestävän tuotannon tavoitteita.Additive manufacturing (AM) has been considered viable for complex geometries, topology optimized parts, and parts that are otherwise difficult to produce using conventional manufacturing processes. Despite the advantages, one of the prevalent challenges in AM has been the poor capability of producing functional parts at production volumes that are competitive with traditional manufacturing. Modelling and simulation are powerful tools that can help shorten the design-build-test cycle by enabling rapid analysis of various product designs and process scenarios. Nevertheless, the capabilities and limitations of traditional and advanced manufacturing technologies do define the bounds for new product development. Thus, it is important that the designers have access to methods and tools that enable them to model and simulate product performance and associated manufacturing process performance to realize functional high value products. The motivation for this dissertation research stems from ongoing development of a novel high temperature superconducting (HTS) magnet assembly, which operates in cryogenic environment. Its complexity requires the convergence of multidisciplinary expertise during design and prototyping. The research applies knowledge-based modelling to aid manufacturing process analysis and decision making in the design of mechanical components of the HTS magnet. Further, it explores the feasibility of using AM in the production of the HTS magnet assembly. The developed approach uses product-process integrated modelling based on physical experiments to generate quantitative and qualitative information that define process-structure-property-performance interactions for given material-process combinations. The resulting interactions are then integrated into a graph-based model that can aid in design space exploration to assist early design and manufacturing decision-making. To do so, test components are fabricated using two metal AM processes: wire and arc additive manufacturing and selective laser melting. Metal alloys (stainless steel, mild steel, high-strength low-alloyed steel, aluminium, and copper alloys) commonly used in structural applications are tested for their mechanical-, thermal-, and electrical properties. In addition, microstructural characterization of the alloys is performed to further understand the impact of manufacturing process parameters on material properties. The integrated modelling approach combines the collected experimental data, existing analytical and empirical relationships, and other data-driven models (e.g., finite element models, machine learning models) in the form of a decision support system that enables optimal selection of material, manufacturing technology, process parameters, and other control variables for attaining desired structure, property, and performance characteristics of the final printed component. The manufacturing decision making is performed through implementation of a probabilistic model i.e., a Bayesian network model, which is robust, modular, and can be adapted for other manufacturing systems and product designs. The ability of the model to improve throughput and quality of additive manufacturing processes will boost sustainable manufacturing goals

    Intermodal Terminal Subsystem Technology Selection Using Integrated Fuzzy MCDM Model

    Get PDF
    Intermodal transportation is the use of multiple modes of transportation, which can lead to greater sustainability by reducing environmental impact and traffic congestion and increasing the efficiency of supply chains. One of the preconditions for efficient intermodal transport is the efficient intermodal terminal (IT). ITs allow for the smooth and efficient handling of cargo, thus reducing the time, cost, and environmental impact of transportation. Adequate selection of subsystem technologies can significantly improve the efficiency and productivity of an IT, ultimately leading to cost savings for businesses and a more efficient and sustainable transportation system. Accordingly, this paper aims to establish a framework for the evaluation and selection of appropriate technologies for IT subsystems. To solve the defined problem, an innovative hybrid multi-criteria decision making (MCDM) model, which combines the fuzzy factor relationship (FFARE) and the fuzzy combinative distance-based assessment (FCODAS) methods, is developed in this paper. The FFARE method is used for obtaining criteria weights, while the FCODAS method is used for evaluation and a final ranking of the alternatives. The established framework and the model are tested on a real-life case study, evaluating and selecting the handling technology for a planned IT. The study defines 12 potential variants of handling equipment based on their techno-operational characteristics and evaluates them using 16 criteria. The results indicate that the best handling technology variant is the one that uses a rail-mounted gantry crane for trans-shipment and a reach stacker for horizontal transport and storage. The results also point to the conclusion that instead of choosing equipment for each process separately, it is important to think about the combination of different handling technologies that can work together to complete a series of handling cycle processes. The main contributions of this paper are the development of a new hybrid model and the establishment of a framework for the selection of appropriate IT subsystem technologies along with a set of unique criteria for their evaluation and selection

    Micro-Electro Discharge Machining: Principles, Recent Advancements and Applications

    Get PDF
    Micro electrical discharge machining (micro-EDM) is a thermo-electric and contactless process most suited for micro-manufacturing and high-precision machining, especially when difficult-to-cut materials, such as super alloys, composites, and electro conductive ceramics, are processed. Many industrial domains exploit this technology to fabricate highly demanding components, such as high-aspect-ratio micro holes for fuel injectors, high-precision molds, and biomedical parts.Moreover, the continuous trend towards miniaturization and high precision functional components boosted the development of control strategies and optimization methodologies specifically suited to address the challenges in micro- and nano-scale fabrication.This Special Issue showcases 12 research papers and a review article focusing on novel methodological developments on several aspects of micro electrical discharge machining: machinability studies of hard materials (TiNi shape memory alloys, Si3N4–TiN ceramic composite, ZrB2-based ceramics reinforced with SiC fibers and whiskers, tungsten-cemented carbide, Ti-6Al-4V alloy, duplex stainless steel, and cubic boron nitride), process optimization adopting different dielectrics or electrodes, characterization of mechanical performance of processed surface, process analysis, and optimization via discharge pulse-type discrimination, hybrid processes, fabrication of molds for inflatable soft microactuators, and implementation of low-cost desktop micro-EDM system

    Modeling, Simulation and Data Processing for Additive Manufacturing

    Get PDF
    Additive manufacturing (AM) or, more commonly, 3D printing is one of the fundamental elements of Industry 4.0. and the fourth industrial revolution. It has shown its potential example in the medical, automotive, aerospace, and spare part sectors. Personal manufacturing, complex and optimized parts, short series manufacturing and local on-demand manufacturing are some of the current benefits. Businesses based on AM have experienced double-digit growth in recent years. Accordingly, we have witnessed considerable efforts in developing processes and materials in terms of speed, costs, and availability. These open up new applications and business case possibilities all the time, which were not previously in existence. Most research has focused on material and AM process development or effort to utilize existing materials and processes for industrial applications. However, improving the understanding and simulation of materials and AM process and understanding the effect of different steps in the AM workflow can increase the performance even more. The best way of benefit of AM is to understand all the steps related to that—from the design and simulation to additive manufacturing and post-processing ending the actual application.The objective of this Special Issue was to provide a forum for researchers and practitioners to exchange their latest achievements and identify critical issues and challenges for future investigations on “Modeling, Simulation and Data Processing for Additive Manufacturing”. The Special Issue consists of 10 original full-length articles on the topic
    corecore