56,624 research outputs found

    New Method for Measuring the Detail Preservation of Noise Removal Techniques in Digital Images

    Get PDF
    It is known that cancelling the noise without blurring the image details is a very difficult task for any image denoising technique. The availability of metrics for accurate evaluation of filtering distortion is thus of paramount importance for the development of new filters. Peak signal-to-blur ratio PSBR is a recently introduced measure of detail preservation that overcomes the limitations of the sole peak signal-to-noise ratio (PSNR) and other metrics in evaluating the performance of image denoising filters. Formally, the PSBR is the PSNR component that deals with the detail blur, so the method that is adopted for blur estimation plays a key role. This paper presents a novel algorithm for PSBR computation that offers significant advantages over the first method: it is simpler, more robust and much more accurate. Furthermore, this paper presents new validation tools for evaluating the accuracy of this kind of metrics when some well known classes of linear and nonlinear filters are considered. Results of many computer simulations dealing with images corrupted by different combinations of Gaussian and impulse noise show that the proposed PSBR algorithm outperforms the most effective metrics in the field

    Natural image noise level estimation based on local statistics for blind noise reduction

    Get PDF
    This study proposes an automatic noise estimation method based on local statistics for additive white Gaussian noise. Noise estimation is an important process in digital imaging systems. For example, the performance of an image denoising algorithm can be significantly degraded because of poor noise level estimation. Most of the literature on the subject tends to use the true noise level of a noisy image when suppressing noise artifacts. Moreover, even with the given true noise level, these denoising techniques still cannot attain the best result, particularly for images with complicated details. In this study, a patch-based estimation technique is used to estimate for noise level and applies it to the proposed blind image denoising algorithm. Our approach includes selecting low-rank sub-image with removing high-frequency components from the contaminated image. This selection is according to the gradients of patches with the same statistics. Consequently, we need to estimate the noise level from the selected patches using principal component analysis (PCA). For blind denoising applications, the proposed denoising algorithm integrates the undecimated wavelet-based denoising algorithms and PCA to develop the subjective and objective qualities of the observed image, which result from filtering processes. Experiment results depict that the suggested algorithm performs efficiently over a wide range of visual contents and noise conditions, as well as in additive noise. Associated with different conventional noise estimators, the proposed algorithm yields the best performance, higher-quality images, and faster running speed

    Wavelet-based denoising for 3D OCT images

    Get PDF
    Optical coherence tomography produces high resolution medical images based on spatial and temporal coherence of the optical waves backscattered from the scanned tissue. However, the same coherence introduces speckle noise as well; this degrades the quality of acquired images. In this paper we propose a technique for noise reduction of 3D OCT images, where the 3D volume is considered as a sequence of 2D images, i.e., 2D slices in depth-lateral projection plane. In the proposed method we first perform recursive temporal filtering through the estimated motion trajectory between the 2D slices using noise-robust motion estimation/compensation scheme previously proposed for video denoising. The temporal filtering scheme reduces the noise level and adapts the motion compensation on it. Subsequently, we apply a spatial filter for speckle reduction in order to remove the remainder of noise in the 2D slices. In this scheme the spatial (2D) speckle-nature of noise in OCT is modeled and used for spatially adaptive denoising. Both the temporal and the spatial filter are wavelet-based techniques, where for the temporal filter two resolution scales are used and for the spatial one four resolution scales. The evaluation of the proposed denoising approach is done on demodulated 3D OCT images on different sources and of different resolution. For optimizing the parameters for best denoising performance fantom OCT images were used. The denoising performance of the proposed method was measured in terms of SNR, edge sharpness preservation and contrast-to-noise ratio. A comparison was made to the state-of-the-art methods for noise reduction in 2D OCT images, where the proposed approach showed to be advantageous in terms of both objective and subjective quality measures

    Direct exoplanet detection and characterization using the ANDROMEDA method: Performance on VLT/NaCo data

    Full text link
    Context. The direct detection of exoplanets with high-contrast imaging requires advanced data processing methods to disentangle potential planetary signals from bright quasi-static speckles. Among them, angular differential imaging (ADI) permits potential planetary signals with a known rotation rate to be separated from instrumental speckles that are either statics or slowly variable. The method presented in this paper, called ANDROMEDA for ANgular Differential OptiMal Exoplanet Detection Algorithm is based on a maximum likelihood approach to ADI and is used to estimate the position and the flux of any point source present in the field of view. Aims. In order to optimize and experimentally validate this previously proposed method, we applied ANDROMEDA to real VLT/NaCo data. In addition to its pure detection capability, we investigated the possibility of defining simple and efficient criteria for automatic point source extraction able to support the processing of large surveys. Methods. To assess the performance of the method, we applied ANDROMEDA on VLT/NaCo data of TYC-8979-1683-1 which is surrounded by numerous bright stars and on which we added synthetic planets of known position and flux in the field. In order to accommodate the real data properties, it was necessary to develop additional pre-processing and post-processing steps to the initially proposed algorithm. We then investigated its skill in the challenging case of a well-known target, β\beta Pictoris, whose companion is close to the detection limit and we compared our results to those obtained by another method based on principal component analysis (PCA). Results. Application on VLT/NaCo data demonstrates the ability of ANDROMEDA to automatically detect and characterize point sources present in the image field. We end up with a robust method bringing consistent results with a sensitivity similar to the recently published algorithms, with only two parameters to be fine tuned. Moreover, the companion flux estimates are not biased by the algorithm parameters and do not require a posteriori corrections. Conclusions. ANDROMEDA is an attractive alternative to current standard image processing methods that can be readily applied to on-sky data

    Background derivation and image flattening: getimages

    Full text link
    Modern high-resolution images obtained with space observatories display extremely strong intensity variations across images on all spatial scales. Source extraction in such images with methods based on global thresholding may bring unacceptably large numbers of spurious sources in bright areas while failing to detect sources in low-background or low-noise areas. It would be highly beneficial to subtract background and equalize the levels of small-scale fluctuations in the images before extracting sources or filaments. This paper describes getimages, a new method of background derivation and image flattening. It is based on median filtering with sliding windows that correspond to a range of spatial scales from the observational beam size up to a maximum structure width XλX_{\lambda}. The latter is a single free parameter of getimages that can be evaluated manually from the observed image Iλ\mathcal{I}_{\lambda}. The median filtering algorithm provides a background image B~λ\tilde{\mathcal{B}}_{\lambda} for structures of all widths below XλX_{\lambda}. The same median filtering procedure applied to an image of standard deviations Dλ\mathcal{D}_{\lambda} derived from a background-subtracted image S~λ\tilde{\mathcal{S}}_{\lambda} results in a flattening image F~λ\tilde{\mathcal{F}}_{\lambda}. Finally, a flattened detection image IλD=S~λ/F~λ\mathcal{I}_{{\lambda}\mathrm{D}}{\,=\,}\tilde{\mathcal{S}}_{\lambda}{/}\tilde{\mathcal{F}}_{\lambda} is computed, whose standard deviations are uniform outside sources and filaments. Detecting sources in such greatly simplified images results in much cleaner extractions that are more complete and reliable. As a bonus, getimages reduces various observational and map-making artifacts and equalizes noise levels between independent tiles of mosaicked images.Comment: 14 pages, 11 figures (main text + 3 appendices), accepted by Astronomy & Astrophysics; fixed Metadata abstract (typesetting
    corecore