4,984 research outputs found

    A Review of Atrial Fibrillation Detection Methods as a Service

    Get PDF
    Atrial Fibrillation (AF) is a common heart arrhythmia that often goes undetected, and even if it is detected, managing the condition may be challenging. In this paper, we review how the RR interval and Electrocardiogram (ECG) signals, incorporated into a monitoring system, can be useful to track AF events. Were such an automated system to be implemented, it could be used to help manage AF and thereby reduce patient morbidity and mortality. The main impetus behind the idea of developing a service is that a greater data volume analyzed can lead to better patient outcomes. Based on the literature review, which we present herein, we introduce the methods that can be used to detect AF efficiently and automatically via the RR interval and ECG signals. A cardiovascular disease monitoring service that incorporates one or multiple of these detection methods could extend event observation to all times, and could therefore become useful to establish any AF occurrence. The development of an automated and efficient method that monitors AF in real time would likely become a key component for meeting public health goals regarding the reduction of fatalities caused by the disease. Yet, at present, significant technological and regulatory obstacles remain, which prevent the development of any proposed system. Establishment of the scientific foundation for monitoring is important to provide effective service to patients and healthcare professionals

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    A study on stability analysis of atrial repolarization variability using ARX model in sinus rhythm and atrial tachycardia ECGs

    Get PDF
    © 2016 Elsevier Ireland Ltd Background The interaction between the PTa and PP interval dynamics from the surface ECG is seldom explained. Mathematical modeling of these intervals is of interest in finding the relationship between the heart rate and repolarization variability. Objective The goal of this paper is to assess the bounded input bounded output (BIBO) stability in PTa interval (PTaI) dynamics using autoregressive exogenous (ARX) model and to investigate the reason for causing instability in the atrial repolarization process. Methods Twenty-five male subjects in normal sinus rhythm (NSR) and ten male subjects experiencing atrial tachycardia (AT) were included in this study. Five minute long, modified limb lead (MLL) ECGs were recorded with an EDAN SE-1010 PC ECG system. The number of minute ECGs with unstable segments (N us ) and the frequency of premature activation (PA) (i.e. atrial activation) were counted for each ECG recording and compared between AT and NSR subjects. Results The instability in PTaI dynamics was quantified by measuring the numbers of unstable segments in ECG data for each subject. The unstable segments in the PTaI dynamics were associated with the frequency of PA. The presence of PA is not the only factor causing the instability in PTaI dynamics in NSR subjects, and it is found that the cause of instability is mainly due to the heart rate variability (HRV). C onclusion The ARX model showed better prediction of PTa interval dynamics in both groups. The frequency of PA is significantly higher in AT patients than NSR subjects. A more complex model is needed to better identify and characterize healthy heart dynamics

    Algorithms for automated diagnosis of cardiovascular diseases based on ECG data: A comprehensive systematic review

    Get PDF
    The prevalence of cardiovascular diseases is increasing around the world. However, the technology is evolving and can be monitored with low-cost sensors anywhere at any time. This subject is being researched, and different methods can automatically identify these diseases, helping patients and healthcare professionals with the treatments. This paper presents a systematic review of disease identification, classification, and recognition with ECG sensors. The review was focused on studies published between 2017 and 2022 in different scientific databases, including PubMed Central, Springer, Elsevier, Multidisciplinary Digital Publishing Institute (MDPI), IEEE Xplore, and Frontiers. It results in the quantitative and qualitative analysis of 103 scientific papers. The study demonstrated that different datasets are available online with data related to various diseases. Several ML/DP-based models were identified in the research, where Convolutional Neural Network and Support Vector Machine were the most applied algorithms. This review can allow us to identify the techniques that can be used in a system that promotes the patient’s autonomy.N/

    Early Detection and Continuous Monitoring of Atrial Fibrillation from ECG Signals with a Novel Beat-Wise Severity Ranking Approach

    Get PDF
    Irregularities in heartbeats and cardiac functioning outside of clinical settings are often not available to the clinicians, and thus ignored. But monitoring these with high-risk population might assist in early detection and continuous monitoring of Atrial Fibrillation(AF). Wearable devices like smart watches and wristbands, which can collect Electrocardigraph(ECG) signals, can monitor and warn users of unusual signs in a timely manner. Thus, there is a need to develop a real-time monitoring system for AF from ECG. We propose an algorithm for a simple beat-by-beat ECG signal multilevel classifier for AF detection and a quantitative severity scale (between 0 to 1) for user feedback. For this study, we used ECG recordings from MIT BIH Atrial Fibrillation, MIT BIH Long-term Atrial Fibrillation Database. All ECG signals are preprocessed for reducing noise using filter. Preprocessed signal is analyzed for extracting 39 features including 20 of amplitude type and 19 of interval type. The feature space for all ECG recordings is considered for Classification. Training and testing data include all classes of data i.e., beats to identify various episodes for severity. Feature space from the test data is fed to the classifier which determines the class label based on trained model. A class label is determined based on number of occurences of AF and other arrhythmia episodes such as AB(Atrial Bigeminy), SBR(Sinus Bradycardia), SVTA(Supra Ventricular Tacchyarrhythmia). Accuracy of 96.7764% is attained with Random Forest algorithm, Furthermore, precision and recall are determined based on correct and incorrect classifications for each class. Precision and recall on average of Random Forest Classifier are obtained as 0.968 and 0.968 respectievely. This work provides a novel approach to enhance existing method of AF detection by identifying heartbeat class and calculates a quantitative severity metric that might help in early detection and continuous monitoring of AF

    Evolutionary Optimization of Atrial Fibrillation Diagnostic Algorithms

    Get PDF
    The goal of this research is to introduce an improved method for detecting atrial fibrillation (AF). The foundation of our algorithm is the irregularity of the RR intervals in the electrocardiogram (ECG) signal, and their correlation with AF. Three statistical techniques, including root mean squares of successive differences (RMSSD), turning points ratio (TPR), and Shannon entropy (SE), are used to detect RR interval irregularity. We use the Massachusetts Institution of Technology / Beth Israel Hospital (MIT-BIH) atrial fibrillation databases and their annotations to tune the parameters of the statistical methods by biogeography-based optimization (BBO), which is an evolutionary optimization algorithm. We trained each statistical method to diagnose AF on each database. Then each trained method was tested on the rest of the databases. We were able to obtain accuracy levels as high as 99 for the detection of AF in the trained databases. We obtained accuracy levels of up to 75 in the tested database

    Classification of Arrhythmia from ECG Signals using MATLAB

    Get PDF
    An Electrocardiogram (ECG) is defined as a test that is performed on the heart to detect any abnormalities in the cardiac cycle. Automatic classification of ECG has evolved as an emerging tool in medical diagnosis for effective treatments. The work proposed in this paper has been implemented using MATLAB. In this paper, we have proposed an efficient method to classify the ECG into normal and abnormal as well as classify the various abnormalities. To brief it, after the collection and filtering the ECG signal, morphological and dynamic features from the signal were obtained which was followed by two step classification method based on the traits and characteristic evaluation. ECG signals in this work are collected from MIT-BIH, AHA, ESC, UCI databases. In addition to this, this paper also provides a comparative study of various methods proposed via different techniques. The proposed technique used helped us process, analyze and classify the ECG signals with an accuracy of 97% and with good convenience
    • …
    corecore