20,498 research outputs found

    Viral pathogen discovery.

    Get PDF
    Viral pathogen discovery is of critical importance to clinical microbiology, infectious diseases, and public health. Genomic approaches for pathogen discovery, including consensus polymerase chain reaction (PCR), microarrays, and unbiased next-generation sequencing (NGS), have the capacity to comprehensively identify novel microbes present in clinical samples. Although numerous challenges remain to be addressed, including the bioinformatics analysis and interpretation of large datasets, these technologies have been successful in rapidly identifying emerging outbreak threats, screening vaccines and other biological products for microbial contamination, and discovering novel viruses associated with both acute and chronic illnesses. Downstream studies such as genome assembly, epidemiologic screening, and a culture system or animal model of infection are necessary to establish an association of a candidate pathogen with disease

    Current advances in systems and integrative biology

    Get PDF
    Systems biology has gained a tremendous amount of interest in the last few years. This is partly due to the realization that traditional approaches focusing only on a few molecules at a time cannot describe the impact of aberrant or modulated molecular environments across a whole system. Furthermore, a hypothesis-driven study aims to prove or disprove its postulations, whereas a hypothesis-free systems approach can yield an unbiased and novel testable hypothesis as an end-result. This latter approach foregoes assumptions which predict how a biological system should react to an altered microenvironment within a cellular context, across a tissue or impacting on distant organs. Additionally, re-use of existing data by systematic data mining and re-stratification, one of the cornerstones of integrative systems biology, is also gaining attention. While tremendous efforts using a systems methodology have already yielded excellent results, it is apparent that a lack of suitable analytic tools and purpose-built databases poses a major bottleneck in applying a systematic workflow. This review addresses the current approaches used in systems analysis and obstacles often encountered in large-scale data analysis and integration which tend to go unnoticed, but have a direct impact on the final outcome of a systems approach. Its wide applicability, ranging from basic research, disease descriptors, pharmacological studies, to personalized medicine, makes this emerging approach well suited to address biological and medical questions where conventional methods are not ideal

    A Viral Discovery Methodology for Clinical Biopsy Samples Utilising Massively Parallel Next Generation Sequencing

    Get PDF
    Here we describe a virus discovery protocol for a range of different virus genera, that can be applied to biopsy-sized tissue samples. Our viral enrichment procedure, validated using canine and human liver samples, significantly improves viral read copy number and increases the length of viral contigs that can be generated by de novo assembly. This in turn enables the Illumina next generation sequencing (NGS) platform to be used as an effective tool for viral discovery from tissue samples

    Rare and common epilepsies converge on a shared gene regulatory network providing opportunities for novel antiepileptic drug discovery

    Get PDF
    Background The relationship between monogenic and polygenic forms of epilepsy is poorly understood, and the extent to which the genetic and acquired epilepsies share common pathways is unclear. Here, we use an integrated systems-level analysis of brain gene expression data to identify molecular networks disrupted in epilepsy. Results We identify a co-expression network of 320 genes (M30), which is significantly enriched for non-synonymous de novo mutations ascertained from patients with monogenic epilepsy, and for common variants associated with polygenic epilepsy. The genes in M30 network are expressed widely in the human brain under tight developmental control, and encode physically interacting proteins involved in synaptic processes. The most highly connected proteins within M30 network are preferentially disrupted by deleterious de novo mutations for monogenic epilepsy, in line with the centrality-lethality hypothesis. Analysis of M30 expression revealed consistent down-regulation in the epileptic brain in heterogeneous forms of epilepsy including human temporal lobe epilepsy, a mouse model of acquired temporal lobe epilepsy, and a mouse model of monogenic Dravet (SCN1A) disease. These results suggest functional disruption of M30 via gene mutation or altered expression as a convergent mechanism regulating susceptibility to epilepsy broadly. Using the large collection of drug-induced gene expression data from Connectivity Map, several drugs were predicted to preferentially restore the down-regulation of M30 in epilepsy toward health, most notably valproic acid, whose effect on M30 expression was replicated in neurons. Conclusions Taken together, our results suggest targeting the expression of M30 as a potential new therapeutic strategy in epilepsy

    Unraveling the Role of Allo-Antibodies and Transplant Injury.

    Get PDF
    Alloimmunity driving rejection in the context of solid organ transplantation can be grossly divided into mechanisms predominantly driven by either T cell-mediated rejection (TCMR) and antibody-mediated rejection (ABMR), though the co-existence of both types of rejections can be seen in a variable number of sampled grafts. Acute TCMR can generally be well controlled by the establishment of effective immunosuppression (1, 2). Acute ABMR is a low frequency finding in the current era of blood group and HLA donor/recipient matching and the avoidance of engraftment in the context of high-titer, preformed donor-specific antibodies. However, chronic ABMR remains a major complication resulting in the untimely loss of transplanted organs (3-10). The close relationship between donor-specific antibodies and ABMR has been revealed by the highly sensitive detection of human leukocyte antigen (HLA) antibodies (7, 11-15). Injury to transplanted organs by activation of humoral immune reaction in the context of HLA identical transplants and the absence of donor specific antibodies (17-24), strongly suggest the participation of non-HLA (nHLA) antibodies in ABMR (25). In this review, we discuss the genesis of ABMR in the context of HLA and nHLA antibodies and summarize strategies for ABMR management

    DNA Sequencing

    Get PDF
    This book illustrates methods of DNA sequencing and its application in plant, animal and medical sciences. It has two distinct sections. The one includes 2 chapters devoted to the DNA sequencing methods and the second includes 6 chapters focusing on various applications of this technology. The content of the articles presented in the book is guided by the knowledge and experience of the contributing authors. This book is intended to serve as an important resource and review to the researchers in the field of DNA sequencing
    • …
    corecore