324,838 research outputs found

    Three Dimensional Magneto Hydrodynamical Simulations of Gravitational Collapse of a 15Msun Star

    Full text link
    We introduce our newly developed two different, three dimensional magneto hydrodynamical codes in detail. One of our codes is written in the Newtonian limit (NMHD) and the other is in the fully general relativistic code (GRMHD). Both codes employ adaptive mesh refinement and, in GRMHD, the metric is evolved with the "Baumgarte-Shapiro-Shibata-Nakamura" formalism known as the most stable method at present. We did several test problems and as for the first practical test, we calculated gravitational collapse of a 15M15M_\odot star. Main features found from our calculations are; (1) High velocity bipolar outflow is driven from the proto-neutronstar and moves through along the rotational axis in strongly magnetized models; (2) A one-armed spiral structure appears which is originated from the low-T/W|T/W| instability; (3) By comparing GRMHD and NMHD models, the maximum density increases about 30\sim30% in GRMHD models due to the stronger gravitational effect. These features agree very well with previous studies and our codes are thus reliable to numerical simulation of gravitational collapse of massive stars.Comment: Accepted by ApJS, 55 pages, 34 figure

    Error Analysis of Band Matrix Method

    Get PDF
    Numerical error in the solution of the band matrix method based on the elimination method in single precision is investigated theoretically and experimentally, and the behaviour of the truncation error and the roundoff error is clarified. Some important suggestions for the useful application of the band solver are proposed by using the results of above error analysis

    Relativistic MHD and black hole excision: Formulation and initial tests

    Full text link
    A new algorithm for solving the general relativistic MHD equations is described in this paper. We design our scheme to incorporate black hole excision with smooth boundaries, and to simplify solving the combined Einstein and MHD equations with AMR. The fluid equations are solved using a finite difference Convex ENO method. Excision is implemented using overlapping grids. Elliptic and hyperbolic divergence cleaning techniques allow for maximum flexibility in choosing coordinate systems, and we compare both methods for a standard problem. Numerical results of standard test problems are presented in two-dimensional flat space using excision, overlapping grids, and elliptic and hyperbolic divergence cleaning.Comment: 22 pages, 8 figure

    Comparing Cost Functions in Resource Analysis

    Get PDF
    Cost functions provide information about the amount of resources required to execute a program in terms of the sizes of input arguments. They can provide an upper-bound, a lower-bound, or the average-case cost. Motivated by the existence of a number of automatic cost analyzers which produce cost functions, we propose an approach for automatically proving that a cost function is smaller than another one. In all applications of resource analysis, such as resource-usage verification, program synthesis and optimization, etc., it is essential to compare cost functions. This allows choosing an implementation with smaller cost or guaranteeing that the given resource-usage bounds are preserved. Unfortunately, automatically generated cost functions for realistic programs tend to be rather intricate, defined by multiple cases, involving non-linear subexpressions (e.g., exponential, polynomial and logarithmic) and they can contain multiple variables, possibly related by means of constraints. Thus, comparing cost functions is far from trivial. Our approach first syntactically transforms functions into simpler forms and then applies a number of su!cient conditions which guarantee that a set of expressions is smaller than another expression. Our preliminary implementation in the COSTA system indicates that the approach can be useful in practic

    Statistical Mechanics of maximal independent sets

    Full text link
    The graph theoretic concept of maximal independent set arises in several practical problems in computer science as well as in game theory. A maximal independent set is defined by the set of occupied nodes that satisfy some packing and covering constraints. It is known that finding minimum and maximum-density maximal independent sets are hard optimization problems. In this paper, we use cavity method of statistical physics and Monte Carlo simulations to study the corresponding constraint satisfaction problem on random graphs. We obtain the entropy of maximal independent sets within the replica symmetric and one-step replica symmetry breaking frameworks, shedding light on the metric structure of the landscape of solutions and suggesting a class of possible algorithms. This is of particular relevance for the application to the study of strategic interactions in social and economic networks, where maximal independent sets correspond to pure Nash equilibria of a graphical game of public goods allocation

    Numerical simulations with a first order BSSN formulation of Einstein's field equations

    Get PDF
    We present a new fully first order strongly hyperbolic representation of the BSSN formulation of Einstein's equations with optional constraint damping terms. We describe the characteristic fields of the system, discuss its hyperbolicity properties, and present two numerical implementations and simulations: one using finite differences, adaptive mesh refinement and in particular binary black holes, and another one using the discontinuous Galerkin method in spherical symmetry. The results of this paper constitute a first step in an effort to combine the robustness of BSSN evolutions with very high accuracy numerical techniques, such as spectral collocation multi-domain or discontinuous Galerkin methods.Comment: To appear in Physical Review

    A Hybrid Godunov Method for Radiation Hydrodynamics

    Full text link
    From a mathematical perspective, radiation hydrodynamics can be thought of as a system of hyperbolic balance laws with dual multiscale behavior (multiscale behavior associated with the hyperbolic wave speeds as well as multiscale behavior associated with source term relaxation). With this outlook in mind, this paper presents a hybrid Godunov method for one-dimensional radiation hydrodynamics that is uniformly well behaved from the photon free streaming (hyperbolic) limit through the weak equilibrium diffusion (parabolic) limit and to the strong equilibrium diffusion (hyperbolic) limit. Moreover, one finds that the technique preserves certain asymptotic limits. The method incorporates a backward Euler upwinding scheme for the radiation energy density and flux as well as a modified Godunov scheme for the material density, momentum density, and energy density. The backward Euler upwinding scheme is first-order accurate and uses an implicit HLLE flux function to temporally advance the radiation components according to the material flow scale. The modified Godunov scheme is second-order accurate and directly couples stiff source term effects to the hyperbolic structure of the system of balance laws. This Godunov technique is composed of a predictor step that is based on Duhamel's principle and a corrector step that is based on Picard iteration. The Godunov scheme is explicit on the material flow scale but is unsplit and fully couples matter and radiation without invoking a diffusion-type approximation for radiation hydrodynamics. This technique derives from earlier work by Miniati & Colella 2007. Numerical tests demonstrate that the method is stable, robust, and accurate across various parameter regimes.Comment: accepted for publication in Journal of Computational Physics; 61 pages, 15 figures, 11 table
    corecore