4,698 research outputs found

    Spatial calibration of an optical see-through head-mounted display

    Get PDF
    We present here a method for calibrating an optical see-through Head Mounted Display (HMD) using techniques usually applied to camera calibration (photogrammetry). Using a camera placed inside the HMD to take pictures simultaneously of a tracked object and features in the HMD display, we could exploit established camera calibration techniques to recover both the intrinsic and extrinsic properties of the~HMD (width, height, focal length, optic centre and principal ray of the display). Our method gives low re-projection errors and, unlike existing methods, involves no time-consuming and error-prone human measurements, nor any prior estimates about the HMD geometry

    Calibration Methods for Head-Tracked 3D Displays

    Get PDF
    Head-tracked 3D displays can provide a compelling 3D effect, but even small inaccuracies in the calibration of the participant’s viewpoint to the display can disrupt the 3D illusion. We propose a novel interactive procedure for a participant to easily and accurately calibrate a head-tracked display by visually aligning patterns across a multi-screen display. Head-tracker measurements are then calibrated to these known viewpoints. We conducted a user study to evaluate the effectiveness of different visual patterns and different display shapes. We found that the easiest to align shape was the spherical display and the best calibration pattern was the combination of circles and lines. We performed a quantitative camera-based calibration of a cubic display and found visual calibration outperformed manual tuning and generated viewpoint calibrations accurate to within a degree. Our work removes the usual, burdensome step of manual calibration when using head-tracked displays and paves the way for wider adoption of this inexpensive and effective 3D display technology

    Off-Line Camera-Based Calibration for Optical See-Through Head-Mounted Displays

    Get PDF
    In recent years, the entry into the market of self contained optical see-through headsets with integrated multi-sensor capabilities has led the way to innovative and technology driven augmented reality applications and has encouraged the adoption of these devices also across highly challenging medical and industrial settings. Despite this, the display calibration process of consumer level systems is still sub-optimal, particularly for those applications that require high accuracy in the spatial alignment between computer generated elements and a real-world scene. State-of-the-art manual and automated calibration procedures designed to estimate all the projection parameters are too complex for real application cases outside laboratory environments. This paper describes an off-line fast calibration procedure that only requires a camera to observe a planar pattern displayed on the see-through display. The camera that replaces the user’s eye must be placed within the eye-motion-box of the see-through display. The method exploits standard camera calibration and computer vision techniques to estimate the projection parameters of the display model for a generic position of the camera. At execution time, the projection parameters can then be refined through a planar homography that encapsulates the shift and scaling effect associated with the estimated relative translation from the old camera position to the current user’s eye position. Compared to classical SPAAM techniques that still rely on the human element and to other camera based calibration procedures, the proposed technique is flexible and easy to replicate in both laboratory environments and real-world settings

    Optical See-Through Head Mounted Display Direct Linear Transformation Calibration Robustness in the Presence of User Alignment Noise

    Get PDF
    Augmented Reality (AR) is a technique by which computer generated signals synthesize impressions that are made to coexist with the surrounding real world as perceived by the user. Human smell, taste, touch and hearing can all be augmented, but most commonly AR refers to the human vision being overlaid with information otherwise not readily available to the user. A correct calibration is important on an application level, ensuring that e.g. data labels are presented at correct locations, but also on a system level to enable display techniques such as stereoscopy to function properly [SOURCE]. Thus, vital to AR, calibration methodology is an important research area. While great achievements already have been made, there are some properties in current calibration methods for augmenting vision which do not translate from its traditional use in automated cameras calibration to its use with a human operator. This paper uses a Monte Carlo simulation of a standard direct linear transformation camera calibration to investigate how user introduced head orientation noise affects the parameter estimation during a calibration procedure of an optical see-through head mounted display

    The DICE calibration project: design, characterization, and first results

    Full text link
    We describe the design, operation, and first results of a photometric calibration project, called DICE (Direct Illumination Calibration Experiment), aiming at achieving precise instrumental calibration of optical telescopes. The heart of DICE is an illumination device composed of 24 narrow-spectrum, high-intensity, light-emitting diodes (LED) chosen to cover the ultraviolet-to-near-infrared spectral range. It implements a point-like source placed at a finite distance from the telescope entrance pupil, yielding a flat field illumination that covers the entire field of view of the imager. The purpose of this system is to perform a lightweight routine monitoring of the imager passbands with a precision better than 5 per-mil on the relative passband normalisations and about 3{\AA} on the filter cutoff positions. The light source is calibrated on a spectrophotometric bench. As our fundamental metrology standard, we use a photodiode calibrated at NIST. The radiant intensity of each beam is mapped, and spectra are measured for each LED. All measurements are conducted at temperatures ranging from 0{\deg}C to 25{\deg}C in order to study the temperature dependence of the system. The photometric and spectroscopic measurements are combined into a model that predicts the spectral intensity of the source as a function of temperature. We find that the calibration beams are stable at the 10410^{-4} level -- after taking the slight temperature dependence of the LED emission properties into account. We show that the spectral intensity of the source can be characterised with a precision of 3{\AA} in wavelength. In flux, we reach an accuracy of about 0.2-0.5% depending on how we understand the off-diagonal terms of the error budget affecting the calibration of the NIST photodiode. With a routine 60-mn calibration program, the apparatus is able to constrain the passbands at the targeted precision levels.Comment: 25 pages, 27 figures, accepted for publication in A&

    A Virtual Testbed for Fish-Tank Virtual Reality: Improving Calibration with a Virtual-in-Virtual Display

    Get PDF
    With the development of novel calibration techniques for multimedia projectors and curved projection surfaces, volumetric 3D displays are becoming easier and more affordable to build. The basic requirements include a display shape that defines the volume (e.g. a sphere, cylinder, or cuboid) and a tracking system to provide each user's location for the perspective corrected rendering. When coupled with modern graphics cards, these displays are capable of high resolution, low latency, high frame rate, and even stereoscopic rendering; however, like many previous studies have shown, every component must be precisely calibrated for a compelling 3D effect. While human perceptual requirements have been extensively studied for head-tracked displays, most studies featured seated users in front of a flat display. It remains unclear if results from these flat display studies are applicable to newer, walk-around displays with enclosed or curved shapes. To investigate these issues, we developed a virtual testbed for volumetric head-tracked displays that can measure calibration accuracy of the entire system in real-time. We used this testbed to investigate visual distortions of prototype curved displays, improve existing calibration techniques, study the importance of stereo to performance and perception, and validate perceptual calibration with novice users. Our experiments show that stereo is important for task performance, but requires more accurate calibration, and that novice users can make effective use of perceptual calibration tools. We also propose a novel, real-time calibration method that can be used to fine-tune an existing calibration using perceptual feedback. The findings from this work can be used to build better head-tracked volumetric displays with an unprecedented amount of 3D realism and intuitive calibration tools for novice users

    Augmented reality for computer assisted orthopaedic surgery

    Get PDF
    In recent years, computer-assistance and robotics have established their presence in operating theatres and found success in orthopaedic procedures. Benefits of computer assisted orthopaedic surgery (CAOS) have been thoroughly explored in research, finding improvements in clinical outcomes, through increased control and precision over surgical actions. However, human-computer interaction in CAOS remains an evolving field, through emerging display technologies including augmented reality (AR) – a fused view of the real environment with virtual, computer-generated holograms. Interactions between clinicians and patient-specific data generated during CAOS are limited to basic 2D interactions on touchscreen monitors, potentially creating clutter and cognitive challenges in surgery. Work described in this thesis sought to explore the benefits of AR in CAOS through: an integration between commercially available AR and CAOS systems, creating a novel AR-centric surgical workflow to support various tasks of computer-assisted knee arthroplasty, and three pre–clinical studies exploring the impact of the new AR workflow on both existing and newly proposed quantitative and qualitative performance metrics. Early research focused on cloning the (2D) user-interface of an existing CAOS system onto a virtual AR screen and investigating any resulting impacts on usability and performance. An infrared-based registration system is also presented, describing a protocol for calibrating commercial AR headsets with optical trackers, calculating a spatial transformation between surgical and holographic coordinate frames. The main contribution of this thesis is a novel AR workflow designed to support computer-assisted patellofemoral arthroplasty. The reported workflow provided 3D in-situ holographic guidance for CAOS tasks including patient registration, pre-operative planning, and assisted-cutting. Pre-clinical experimental validation on a commercial system (NAVIO®, Smith & Nephew) for these contributions demonstrates encouraging early-stage results showing successful deployment of AR to CAOS systems, and promising indications that AR can enhance the clinician’s interactions in the future. The thesis concludes with a summary of achievements, corresponding limitations and future research opportunities.Open Acces
    corecore