41 research outputs found

    Development of a robust and resilient Supply Chain System for selected companies in Gauteng

    Get PDF
    Abstract: These days, in the extremely competitive nature of business, nearly every big business has to reap the benefits of investing in improvements of its supply chain. The beginning of the upgrades is considered together with the examination concerning profits and most organisations have addressed measures that a supply chain execution and monitor changes in order to drive the benefits of their business. While execution estimation is basic, most organisations either measure excessively or pay little attention to supply chain. Different weaknesses may incorporate; an excessive number of measurements, disconnected measurements, clashing measurements, obsolete measurements, temperamental information, and absence of possession, among others. Some organisations measure incorrect variables in their pursuit of their objectives. This is detrimental to the realisation of these objectives and this affects the organisation. Framework estimations lead to improved framework. "Estimation is the initial step that prompts control and in the long run to progress. In the event that you can't gauge something, you can't get it. On the off chance that you can't get it, you can't control it. On the off chance that you can't control it, you can't improve it" (Harrington, 2012)...M.Ing. (Quality and Operations Management

    Process management principles for increasing the energy efficiency of manufacturing operations

    Get PDF
    Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science; in conjunction with the Leaders for Manufacturing Program at MIT, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 81-84).Energy usage is a significant operating cost for manufacturing facilities in the United States, and interest in energy management has been rising of late, 2, 3]. One approach, recommended by the Environmental Protection Agency (EPA), is to piggyback off of an existing lean program to reduce energy waste in manufacturing processes(4]. Just such a pilot program has recently been launched in a major manufacturing facility at Raytheon, where approximately 48% of the facilities' total energy is used on manufacturing processes. The program focuses on proven process management approaches and rides the coattails of the existing lean program at a major manufacturing facility by creating a pull for continuous improvement ideas[1]. The goal this thesis was to increase the efficacy of the existing program, and to develop a practical roadmap to guide energy managers seeking to execute such programs in manufacturing on the shop floor. We investigated three methods to enhance the program. One was to apply the Design, Measure, Analyze, Improve, Control (DMAIC) method, made popular in Six Sigma literature, to the energy waste reduction efforts of a manufacturing area. By shifting focus to more energy intensive equipment, the area quadrupled the amount of energy savings per improvement, and is in line to achieve a 10% reduction in electricity usage(5, 4]. The second method was to provide real-time feedback on electricity usage of energy intensive equipment to workers in a manufacturing cell. During an experimental period, we found that feedback ultimately engaged area operations managers who instituted an auditing program that reduced waste by 43% (or a 26% total reduction in usage) over a short period of time[6, 7, 8, 9]. The third method was to right-size equipment based on customer demand. An analysis of this approach based on field experience revealed that major savings (50% or more reduction in electricity usage) on targeted systems can be expected as companies remove "monument" equipment in supporting smaller and more responsive process flows such as true cellular manufacturing[3, 4]. In summary, we found that application of continuous improvement principles can positively impact energy efficiency programs at manufacturing facilities. In addition the three methods are different in cost and longevity, with the DMAIC and feedback at low cost and immediate impact (but potentially fading effectiveness), and right-sizing at higher cost, but producing longer term and potentially more durable savings.by Leo P. Espindle.S.M.M.B.A

    "Production Ergonomics

    Get PDF
    "Production ergonomics – the science and practice of designing industrial workplaces to optimize human well-being and system performance – is a complex challenge for a designer. Humans are a valuable and flexible resource in any system of creation, and as long as they stay healthy, alert and motivated, they perform well and also become more competent over time, which increases their value as a resource. However, if a system designer is not mindful or aware of the many threats to health and system performance that may emerge, the end result may include inefficiency, productivity losses, low working morale, injuries and sick-leave. To help budding system designers and production engineers tackle these design challenges holistically, this book offers a multi-faceted orientation in the prerequisites for healthy and effective human work. We will cover physical, cognitive and organizational aspects of ergonomics, and provide both the individual human perspective and that of groups and populations, ending up with a look at global challenges that require workplaces to become more socially and economically sustainable. This book is written to give you a warm welcome to the subject, and to provide a solid foundation for improving industrial workplaces to attract and retain healthy and productive staff in the long run.

    "Production Ergonomics

    Get PDF
    "Production ergonomics – the science and practice of designing industrial workplaces to optimize human well-being and system performance – is a complex challenge for a designer. Humans are a valuable and flexible resource in any system of creation, and as long as they stay healthy, alert and motivated, they perform well and also become more competent over time, which increases their value as a resource. However, if a system designer is not mindful or aware of the many threats to health and system performance that may emerge, the end result may include inefficiency, productivity losses, low working morale, injuries and sick-leave. To help budding system designers and production engineers tackle these design challenges holistically, this book offers a multi-faceted orientation in the prerequisites for healthy and effective human work. We will cover physical, cognitive and organizational aspects of ergonomics, and provide both the individual human perspective and that of groups and populations, ending up with a look at global challenges that require workplaces to become more socially and economically sustainable. This book is written to give you a warm welcome to the subject, and to provide a solid foundation for improving industrial workplaces to attract and retain healthy and productive staff in the long run.

    Production Ergonomics: Designing Work Systems to Support Optimal Human Performance

    Get PDF
    Production ergonomics – the science and practice of designing industrial workplaces to optimize human well-being and system performance – is a complex challenge for a designer. Humans are a valuable and flexible resource in any system of creation, and as long as they stay healthy, alert and motivated, they perform well and also become more competent over time, which increases their value as a resource. However, if a system designer is not mindful or aware of the many threats to health and system performance that may emerge, the end result may include inefficiency, productivity losses, low working morale, injuries and sick-leave.To help budding system designers and production engineers tackle these design challenges holistically, this book offers a multi-faceted orientation in the prerequisites for healthy and effective human work. We will cover physical, cognitive and organizational aspects of ergonomics, and provide both the individual human perspective and that of groups and populations, ending up with a look at global challenges that require workplaces to become more socially and economically sustainable. This book is written to give you a warm welcome to the subject, and to provide a solid foundation for improving industrial workplaces to attract and retain healthy and productive staff in the long run

    Re-use : international working seminar : proceedings, 2nd, March 1-3, 1999

    Get PDF

    Re-use : international working seminar : proceedings, 2nd, March 1-3, 1999

    Get PDF

    Impact of manufacturing system design, organizational processes and leadership on manufacturing system change and implementation

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, June 2001.Includes bibliographical references (p. 131-135).Manufacturing system design methodologies often ignore the importance of enterprise related issues that affect the implementation and improvement efforts. Systems Engineering provides a rigorous approach to system design and coupled with a decomposition approach can result in effective system design. Manufacturing system design must be linked to the strategy and objectives of the firm. The decomposition ensures that low-level design decisions are related to the higher-level objectives of the firm. Manufacturing system design is a complicated process that involves all sections of the manufacturing organization; systems engineering provides the rigor to guide the design and implementation process through various phases and ensures that the design is comprehensive. However, the manufacturing organization cannot function independent of the enterprise. Often projects aimed at implementing effective system designs fail as the organizational processes are not aligned and the system is not prepared for the change. Leadership owns the responsibility for aligning interfaces and processes to facilitate change. The thesis is aimed at providing a case study based illustration of the above discussion that highlights certain causes of poor systemic performance. Finally the thesis proposes a methodology that combines some of the pioneering research at the Production System design Laboratory in the area of manufacturing system design to the systems engineering approach and relates these to issues of strategy, organizational processes and alignment of enterprise interfaces.by Abhinav Shukla.S.M

    RFID-Enabled Dynamic Value Stream Mapping for Smart Real-Time Lean-Based Manufacturing System

    Get PDF
    Lean Manufacturing has become the most popular and dominant management strategy in the pursuit of perfection and in strengthening the competitive edges of manufacturers to face the challenges in the global markets. However, today’s global markets drive manufacturers to create highly customer-oriented job-shop manufacturing systems characterized by high dynamic behavior, uncertainty and high variability, in contradiction to lean being originally designed for high repetitive-production systems with a high-volume low-mix work environment with stable demand and a low degree of customization. Moreover, since the product is the changing agent, another challenging aspect that faces the effectiveness of lean is that the product life cycle is rapidly decreasing; and thus some of the lean initiatives often die after the product life cycle ends. In this regard, in order to constantly cope with the resulting rapid changes and adapt new process designs while reviving lean initiatives and keeping them alive; an effective real-time lean-based IT system should be developed, since lean without a real-time IT system has become impracticable and unthinkable in today’s high-customized manufacturing environments. In this context, due to the special characteristics and superior capabilities of Radio Frequency Identification technology (RFID), it could be the major enabler to support such a real-time IT system with real-time production data. However, RFID remains questionable and doubtable and manufacturers are still quite hesitant to adopt it in their manufacturing systems. This thesis introduces a solid basis for a standard framework of a digitalized smart real-time lean-based system. This framework describes the best practice of RFID technology through the integration of real-time production data captured via RFID with lean manufacturing initiatives in manufacturing systems, in order to overcome today’s lean manufacturing challenges. The introduced framework represents a new kind of smart real-time monitoring and controlling lean-based IT mechanism for the next-generation of manufacturing systems with dynamic and intelligent aspects concerning lean targets. The idea of this mechanism has been derived from the main concepts of traditional value stream mapping (VSM), where the time-based flow is greatly emphasized and considered as the most critical success factor of lean. The proposed mechanism is known as Dynamic Value Stream Mapping (DVSM), a computerized event-driven lean-based IT system that runs in real-time according to lean principles that cover all manufacturing aspects through a diversity of powerful practices and tools that are mutually supportive and synergize well together to effectively reduce wastes and maximize value. Therefore, DVSM represents an intelligent, comprehensive, integrated, and holistic real-time lean- based manufacturing system. The DVSM is proposed to contain different types of engines of which the most important engine is the “Lean Practices and Tools Engine” (LPTE) due to its involvement with several lean modules that guarantees the comprehensiveness of the real-time lean system. Each of these modules is specified to control a specific lean tool that is equipped with suitable real-time monitoring and controlling rules called “Real-Time Lean Control Rules” (RT-LCRs), which are expressed using “Complex Event Processing” (CEP) method. The RT-LCRs enable DVSM to smartly detect any production interruptions or incidents and accordingly trigger real-time re/actions to reduce wastes and achieve a smart real-time lean environment. Practically, the basis of this introduced framework in this dissertation is derived based on a highly customized job-shop manufacturing environment of an international switchgear manufacturer in Germany. The contributions of this dissertation are represented as follows: building the main framework of the DVSM starting with a systematic RFID deployment scheme on the production shop floor; introducing the main components of the DVSM (i.e. Event Extractor-engine, AVSM-engine, VVSM-engine, Real-time Rules-engine, and LPTE); demonstrating the feasibility of the DVSM concerning lean targets through developing a number of Lean Practices and Tools Modules that are supplied with RT-LCRs (e.g. Real-time Manufacturing Lead-time Analysis, Smart Real-time Waste Analysis, Real-time Dispatching Priority Generator (RT-DPG), Real-time Smart Production Control (RT-SPC), Smart-5S, Smart Standardized Work, Smart Poka-Yoke, Real-time Manufacturing Cost Tracking (RT-MCT), etc.); verifying the effectiveness of RT-LCRs in RT-DPG and RT-MCT modules through building simulation models using ProModel simulation software and finally proposing a framework of the tools “Smart-5S, Smart Standardized Work, Smart Poka-Yoke” to be implemented in the switchgear manufacturing environment
    corecore