6,964 research outputs found

    On combinatorial optimisation in analysis of protein-protein interaction and protein folding networks

    Get PDF
    Abstract: Protein-protein interaction networks and protein folding networks represent prominent research topics at the intersection of bioinformatics and network science. In this paper, we present a study of these networks from combinatorial optimisation point of view. Using a combination of classical heuristics and stochastic optimisation techniques, we were able to identify several interesting combinatorial properties of biological networks of the COSIN project. We obtained optimal or near-optimal solutions to maximum clique and chromatic number problems for these networks. We also explore patterns of both non-overlapping and overlapping cliques in these networks. Optimal or near-optimal solutions to partitioning of these networks into non-overlapping cliques and to maximum independent set problem were discovered. Maximal cliques are explored by enumerative techniques. Domination in these networks is briefly studied, too. Applications and extensions of our findings are discussed

    SLIDER: Mining correlated motifs in protein-protein interaction networks

    Get PDF
    Abstract—Correlated motif mining (CMM) is the problem to find overrepresented pairs of patterns, called motif pairs, in interacting protein sequences. Algorithmic solutions for CMM thereby provide a computational method for predicting binding sites for protein interaction. In this paper, we adopt a motif-driven approach where the support of candidate motif pairs is evaluated in the network. We experimentally establish the superiority of the Chi-square-based support measure over other support measures. Furthermore, we obtain that CMM is an NP-hard problem for a large class of support measures (including Chi-square) and reformulate the search for correlated motifs as a combinatorial optimization problem. We then present the method SLIDER which uses local search with a neighborhood function based on sliding motifs and employs the Chi-square-based support measure. We show that SLIDER outperforms existing motif-driven CMM methods and scales to large protein-protein interaction networks

    Simultaneous identification of specifically interacting paralogs and inter-protein contacts by Direct-Coupling Analysis

    Full text link
    Understanding protein-protein interactions is central to our understanding of almost all complex biological processes. Computational tools exploiting rapidly growing genomic databases to characterize protein-protein interactions are urgently needed. Such methods should connect multiple scales from evolutionary conserved interactions between families of homologous proteins, over the identification of specifically interacting proteins in the case of multiple paralogs inside a species, down to the prediction of residues being in physical contact across interaction interfaces. Statistical inference methods detecting residue-residue coevolution have recently triggered considerable progress in using sequence data for quaternary protein structure prediction; they require, however, large joint alignments of homologous protein pairs known to interact. The generation of such alignments is a complex computational task on its own; application of coevolutionary modeling has in turn been restricted to proteins without paralogs, or to bacterial systems with the corresponding coding genes being co-localized in operons. Here we show that the Direct-Coupling Analysis of residue coevolution can be extended to connect the different scales, and simultaneously to match interacting paralogs, to identify inter-protein residue-residue contacts and to discriminate interacting from noninteracting families in a multiprotein system. Our results extend the potential applications of coevolutionary analysis far beyond cases treatable so far.Comment: Main Text 19 pages Supp. Inf. 16 page

    ALPINE : Active Link Prediction using Network Embedding

    Get PDF
    Many real-world problems can be formalized as predicting links in a partially observed network. Examples include Facebook friendship suggestions, consumer-product recommendations, and the identification of hidden interactions between actors in a crime network. Several link prediction algorithms, notably those recently introduced using network embedding, are capable of doing this by just relying on the observed part of the network. Often, the link status of a node pair can be queried, which can be used as additional information by the link prediction algorithm. Unfortunately, such queries can be expensive or time-consuming, mandating the careful consideration of which node pairs to query. In this paper we estimate the improvement in link prediction accuracy after querying any particular node pair, to use in an active learning setup. Specifically, we propose ALPINE (Active Link Prediction usIng Network Embedding), the first method to achieve this for link prediction based on network embedding. To this end, we generalized the notion of V-optimality from experimental design to this setting, as well as more basic active learning heuristics originally developed in standard classification settings. Empirical results on real data show that ALPINE is scalable, and boosts link prediction accuracy with far fewer queries

    Machine learning-guided directed evolution for protein engineering

    Get PDF
    Machine learning (ML)-guided directed evolution is a new paradigm for biological design that enables optimization of complex functions. ML methods use data to predict how sequence maps to function without requiring a detailed model of the underlying physics or biological pathways. To demonstrate ML-guided directed evolution, we introduce the steps required to build ML sequence-function models and use them to guide engineering, making recommendations at each stage. This review covers basic concepts relevant to using ML for protein engineering as well as the current literature and applications of this new engineering paradigm. ML methods accelerate directed evolution by learning from information contained in all measured variants and using that information to select sequences that are likely to be improved. We then provide two case studies that demonstrate the ML-guided directed evolution process. We also look to future opportunities where ML will enable discovery of new protein functions and uncover the relationship between protein sequence and function.Comment: Made significant revisions to focus on aspects most relevant to applying machine learning to speed up directed evolutio
    corecore