25 research outputs found

    On the use of quasi-equidistant source points over the sphere surface for the method of fundamental solutions

    Get PDF
    The method of fundamental solutions is broadly used in science and engineering to numerically solve the direct time-harmonic scattering problem. In 2D the choice of source points is usually made by considering an inner pseudo-boundary over which equidistant source points are placed. In 3D, however, this problem is much more challenging, since, in general, equidistant points over a closed surface do not exist. In this paper we discuss a method to obtain a quasi-equidistant point distribution over the unit sphere surface, giving rise to a Delaunay triangulation that might also be used for other boundary element methods. We give theoretical estimates for the expected distance between points and the expect area of each triangle. We illustrate the feasibility of the proposed method in terms of the comparison with the expected values for distance and area. We also provide numerical evidence that this point distribution leads to a good conditioning of the linear system associated with the direct scattering problem, being therefore an adequated choice of source points for the method of fundamental solutions.The first author acknowledges his work is partially supported by National Funding from FCT (Portugal) UID/Multi/04019/2013 and UID/MAT/04561/2019. The second author acknowledges his work is partially supported by National Funding from FCT (Portugal) UID/Multi/04621/2013 and by National Funding from FCT (Portugal) under the project PTDC/EMD-EMD/32162/2017, co-funded by FEDER through COMPETE 2020.info:eu-repo/semantics/publishedVersio

    On stability of discretizations of the Helmholtz equation (extended version)

    Full text link
    We review the stability properties of several discretizations of the Helmholtz equation at large wavenumbers. For a model problem in a polygon, a complete kk-explicit stability (including kk-explicit stability of the continuous problem) and convergence theory for high order finite element methods is developed. In particular, quasi-optimality is shown for a fixed number of degrees of freedom per wavelength if the mesh size hh and the approximation order pp are selected such that kh/pkh/p is sufficiently small and p=O(logk)p = O(\log k), and, additionally, appropriate mesh refinement is used near the vertices. We also review the stability properties of two classes of numerical schemes that use piecewise solutions of the homogeneous Helmholtz equation, namely, Least Squares methods and Discontinuous Galerkin (DG) methods. The latter includes the Ultra Weak Variational Formulation
    corecore