16 research outputs found

    SUPPORT OF MANAGERIAL DECISION MAKING BY TRANSDUCTIVE LEARNING

    Get PDF
    Transductive inference has been introduced as a novelparadigm towards building predictive classi¯cation modelsfrom empirical data. Such models are routinely employedto support decision making in, e.g., marketing, risk manage-ment and manufacturing. To that end, the characteristics ofthe new philosophy are reviewed and their implications fortypical decision problems are examined. The paper\u27s objec-tive is to explore the potential of transductive learning forcorporate planning. The analysis reveals two main factorsthat govern the applicability of transduction in business set-tings, decision scope and urgency. In a similar fashion, twomajor drivers for its e®ectiveness are identi¯ed and empir-ical experiments are undertaken to con¯rm their in°uence.The results evidence that transductive classi¯ers are wellsuperior to their inductive counterparts if their speci¯c ap-plication requirements are ful¯lled

    A Survey on Particle Swarm Optimization for Association Rule Mining

    Get PDF
    Association rule mining (ARM) is one of the core techniques of data mining to discover potentially valuable association relationships from mixed datasets. In the current research, various heuristic algorithms have been introduced into ARM to address the high computation time of traditional ARM. Although a more detailed review of the heuristic algorithms based on ARM is available, this paper differs from the existing reviews in that we expected it to provide a more comprehensive and multi-faceted survey of emerging research, which could provide a reference for researchers in the field to help them understand the state-of-the-art PSO-based ARM algorithms. In this paper, we review the existing research results. Heuristic algorithms for ARM were divided into three main groups, including biologically inspired, physically inspired, and other algorithms. Additionally, different types of ARM and their evaluation metrics are described in this paper, and the current status of the improvement in PSO algorithms is discussed in stages, including swarm initialization, algorithm parameter optimization, optimal particle update, and velocity and position updates. Furthermore, we discuss the applications of PSO-based ARM algorithms and propose further research directions by exploring the existing problems.publishedVersio

    Genetic Programming based Feature Manipulation for Skin Cancer Image Classification

    Get PDF
    Skin image classification involves the development of computational methods for solving problems such as cancer detection in lesion images, and their use for biomedical research and clinical care. Such methods aim at extracting relevant information or knowledge from skin images that can significantly assist in the early detection of disease. Skin images are enormous, and come with various artifacts that hinder effective feature extraction leading to inaccurate classification. Feature selection and feature construction can significantly reduce the amount of data while improving classification performance by selecting prominent features and constructing high-level features. Existing approaches mostly rely on expert intervention and follow multiple stages for pre-processing, feature extraction, and classification, which decreases the reliability, and increases the computational complexity. Since good generalization accuracy is not always the primary objective, clinicians are also interested in analyzing specific features such as pigment network, streaks, and blobs responsible for developing the disease; interpretable methods are favored. In Evolutionary Computation, Genetic Programming (GP) can automatically evolve an interpretable model and address the curse of dimensionality (through feature selection and construction). GP has been successfully applied to many areas, but its potential for feature selection, feature construction, and classification in skin images has not been thoroughly investigated. The overall goal of this thesis is to develop a new GP approach to skin image classification by utilizing GP to evolve programs that are capable of automatically selecting prominent image features, constructing new high level features, interpreting useful image features which can help dermatologist to diagnose a type of cancer, and are robust to processing skin images captured from specialized instruments and standard cameras. This thesis focuses on utilizing a wide range of texture, color, frequency-based, local, and global image properties at the terminal nodes of GP to classify skin cancer images from multiple modalities effectively. This thesis develops new two-stage GP methods using embedded and wrapper feature selection and construction approaches to automatically generating a feature vector of selected and constructed features for classification. The results show that wrapper approach outperforms the embedded approach, the existing baseline GP and other machine learning methods, but the embedded approach is faster than the wrapper approach. This thesis develops a multi-tree GP based embedded feature selection approach for melanoma detection using domain specific and domain independent features. It explores suitable crossover and mutation operators to evolve GP classifiers effectively and further extends this approach using a weighted fitness function. The results show that these multi-tree approaches outperformed single tree GP and other classification methods. They identify that a specific feature extraction method extracts most suitable features for particular images taken from a specific optical instrument. This thesis develops the first GP method utilizing frequency-based wavelet features, where the wrapper based feature selection and construction methods automatically evolve useful constructed features to improve the classification performance. The results show the evidence of successful feature construction by significantly outperforming existing GP approaches, state-of-the-art CNN, and other classification methods. This thesis develops a GP approach to multiple feature construction for ensemble learning in classification. The results show that the ensemble method outperformed existing GP approaches, state-of-the-art skin image classification, and commonly used ensemble methods. Further analysis of the evolved constructed features identified important image features that can potentially help the dermatologist identify further medical procedures in real-world situations

    Grid-enabled adaptive surrugate modeling for computer aided engineering

    Get PDF

    Cyber Security and Critical Infrastructures

    Get PDF
    This book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles: an editorial explaining current challenges, innovative solutions, real-world experiences including critical infrastructure, 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems, and a review of cloud, edge computing, and fog's security and privacy issues

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts
    corecore