554 research outputs found

    Hybrid Bridge-Based Memetic Algorithms for Finding Bottlenecks in Complex Networks

    Get PDF
    We propose a memetic approach to find bottlenecks in complex networks based on searching for a graph partitioning with minimum conductance. Finding the optimum of this problem, also known in statistical mechanics as the Cheeger constant, is one of the most interesting NP-hard network optimisation problems. The existence of low conductance minima indicates bottlenecks in complex networks. However, the problem has not yet been explored in depth in the context of applied discrete optimisation and evolu- tionary approaches to solve it. In this paper, the use of a memetic frame- work is explored to solve the minimum condutance problem. The approach combines a hybrid method of initial population generation based on bridge identification and local optima sampling with a steady-state evolutionary process with two local search subroutines. These two local search subrou- tines have complementary qualities. Efficiency of three crossover operators is explored, namely one-point crossover, uniform crossover, and our own par- tition crossover. Experimental results are presented for both artificial and real-world complex networks. Results for Barab ́asi-Albert model of scale-free networks are presented, as well as results for samples of social networks and protein-protein interaction networks. These indicate that both well-informed initial population generation and the use of a crossover seem beneficial in solving the problem in large-scale

    Relevance of Negative Links in Graph Partitioning: A Case Study Using Votes From the European Parliament

    Get PDF
    In this paper, we want to study the informative value of negative links in signed complex networks. For this purpose, we extract and analyze a collection of signed networks representing voting sessions of the European Parliament (EP). We first process some data collected by the VoteWatch Europe Website for the whole 7 th term (2009-2014), by considering voting similarities between Members of the EP to define weighted signed links. We then apply a selection of community detection algorithms, designed to process only positive links, to these data. We also apply Parallel Iterative Local Search (Parallel ILS), an algorithm recently proposed to identify balanced partitions in signed networks. Our results show that, contrary to the conclusions of a previous study focusing on other data, the partitions detected by ignoring or considering the negative links are indeed remarkably different for these networks. The relevance of negative links for graph partitioning therefore is an open question which should be further explored.Comment: in 2nd European Network Intelligence Conference (ENIC), Sep 2015, Karlskrona, Swede

    Community mining using three closely joint techniques based on community mutual membership and refinement strategy

    Get PDF
    Community structure has become one of the central studies of the topological structure of complex networks in the past decades. Although many advanced approaches have been proposed to identify community structure, those state-of-the-art methods still lack efficiency in terms of a balance between stability, accuracy and computation time. Here, we propose an algorithm with different stages, called TJA-net, to efficiently identify communities in a large network with a good balance between accuracy, stability and computation time. First, we propose an initial labeling algorithm, called ILPA, combining K-nearest neighbor (KNN) and label propagation algorithm (LPA). To produce a number of sub-communities automatically, ILPA iteratively labels a node in a network using the labels of its adjacent nodes and their index of closeness. Next, we merge sub-communities using the mutual membership of two communities. Finally, a refinement strategy is designed for modifying the label of the wrongly clustered nodes at boundaries. In our approach, we propose and use modularity density as the objective function rather than the commonly used modularity. This can deal with the issue of the resolution limit for different network structures enhancing the result precision. We present a series of experiments with artificial and real data set and compare the results obtained by our proposed algorithm with the ones obtained by the state-of-the-art algorithms, which shows the effectiveness of our proposed approach. The experimental results on large-scale artificial networks and real networks illustrate the superiority of our algorithm

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Community Detection in Networks using Bio-inspired Optimization: Latest Developments, New Results and Perspectives with a Selection of Recent Meta-Heuristics

    Get PDF
    Detecting groups within a set of interconnected nodes is a widely addressed prob- lem that can model a diversity of applications. Unfortunately, detecting the opti- mal partition of a network is a computationally demanding task, usually conducted by means of optimization methods. Among them, randomized search heuristics have been proven to be efficient approaches. This manuscript is devoted to pro- viding an overview of community detection problems from the perspective of bio-inspired computation. To this end, we first review the recent history of this research area, placing emphasis on milestone studies contributed in the last five years. Next, we present an extensive experimental study to assess the performance of a selection of modern heuristics over weighted directed network instances. Specifically, we combine seven global search heuristics based on two different similarity metrics and eight heterogeneous search operators designed ad-hoc. We compare our methods with six different community detection techniques over a benchmark of 17 Lancichinetti-Fortunato-Radicchi network instances. Ranking statistics of the tested algorithms reveal that the proposed methods perform com- petitively, but the high variability of the rankings leads to the main conclusion: no clear winner can be declared. This finding aligns with community detection tools available in the literature that hinge on a sequential application of different algorithms in search for the best performing counterpart. We end our research by sharing our envisioned status of this area, for which we identify challenges and opportunities which should stimulate research efforts in years to come

    Soft Computing Techiniques for the Protein Folding Problem on High Performance Computing Architectures

    Get PDF
    The protein-folding problem has been extensively studied during the last fifty years. The understanding of the dynamics of global shape of a protein and the influence on its biological function can help us to discover new and more effective drugs to deal with diseases of pharmacological relevance. Different computational approaches have been developed by different researchers in order to foresee the threedimensional arrangement of atoms of proteins from their sequences. However, the computational complexity of this problem makes mandatory the search for new models, novel algorithmic strategies and hardware platforms that provide solutions in a reasonable time frame. We present in this revision work the past and last tendencies regarding protein folding simulations from both perspectives; hardware and software. Of particular interest to us are both the use of inexact solutions to this computationally hard problem as well as which hardware platforms have been used for running this kind of Soft Computing techniques.This work is jointly supported by the FundaciónSéneca (Agencia Regional de Ciencia y Tecnología, Región de Murcia) under grants 15290/PI/2010 and 18946/JLI/13, by the Spanish MEC and European Commission FEDER under grant with reference TEC2012-37945-C02-02 and TIN2012-31345, by the Nils Coordinated Mobility under grant 012-ABEL-CM-2014A, in part financed by the European Regional Development Fund (ERDF). We also thank NVIDIA for hardware donation within UCAM GPU educational and research centers.Ingeniería, Industria y Construcció
    corecore