677 research outputs found

    Autonomous Underwater Vehicle: 5G Network Design and Simulation Based on Mimetic Technique Control System

    Get PDF
    The Internet of Underwater Things (IoUT) exhibits promising advancement with underwater acoustic wireless network communication (UWSN). Conventionally, IoUT has been utilized for the offshore monitoring and exploration of the environment within the underwater region. The data exchange between the IoUT has been performed with the 5G enabled-communication to establish the connection with the futuristic underwater monitoring. However, the acoustic waves in underwater communication are subjected to longer propagation delay and higher transmission energy. To overcome those issues autonomous underwater vehicle (AUV) is implemented for the data collection and routing based on cluster formation. This paper developed a memetic algorithm-based AUV monitoring system for the underwater environment. The proposed Autonomous 5G Memetic (A5GMEMETIC) model performs the data collection and transmission to increase the USAN performance. The A5GMEMETIC model data collection through the dynamic unaware clustering model minimizes energy consumption. The A5GMemetic optimizes the location of the nodes in the underwater environment for the optimal data path estimation for the data transmission in the network. Simulation analysis is performed comparatively with the proposed A5Gmemetic with the conventional AEDG, DGS, and HAMA models. The comparative analysis expressed that the proposed A5GMeMEMETIC model exhibits the ~12% increased packet delivery ratio (PDR), ~9% reduced delay and ~8% improved network lifetime

    Evolutionary Algorithms for Query Op-timization in Distributed Database Sys-tems: A review

    Get PDF
    Evolutionary Algorithms are bio-inspired optimization problem-solving approaches that exploit principles of biological evolution. , such as natural selection and genetic inheritance. This review paper provides the application of evolutionary and swarms intelligence based query optimization strategies in Distributed Database Systems. The query optimization in a distributed environment is challenging task and hard problem. However, Evolutionary approaches are promising for the optimization problems. The problem of query optimization in a distributed database environment is one of the complex problems. There are several techniques which exist and are being used for query optimization in a distributed database. The intention of this research is to focus on how bio-inspired computational algorithms are used in a distributed database environment for query optimization. This paper provides working of bio-inspired computational algorithms in distributed database query optimization which includes genetic algorithms, ant colony algorithm, particle swarm optimization and Memetic Algorithms

    Optimal Clustering in Wireless Sensor Networks for the Internet of Things Based on Memetic Algorithm: MemeWSN

    Get PDF
    In wireless sensor networks for the Internet of Things (WSN-IoT), the topology deviates very frequently because of the node mobility. The topology maintenance overhead is high in flat-based WSN-IoTs. WSN clustering is suggested to not only reduce the message overhead in WSN-IoT but also control the congestion and easy topology repairs. The partition of wireless mobile nodes (WMNs) into clusters is a multiobjective optimization problem in large-size WSN. Different evolutionary algorithms (EAs) are applied to divide the WSN-IoT into clusters but suffer from early convergence. In this paper, we propose WSN clustering based on the memetic algorithm (MemA) to decrease the probability of early convergence by utilizing local exploration techniques. Optimum clusters in WSN-IoT can be obtained using MemA to dynamically balance the load among clusters. The objective of this research is to find a cluster head set (CH-set) as early as possible once needed. The WMNs with high weight value are selected in lieu of new inhabitants in the subsequent generation. A crossover mechanism is applied to produce new-fangled chromosomes as soon as the two maternities have been nominated. The local search procedure is initiated to enhance the worth of individuals. The suggested method is matched with state-of-the-art methods like MobAC (Singh and Lohani, 2019), EPSO-C (Pathak, 2020), and PBC-CP (Vimalarani, et al. 2016). The proposed technique outperforms the state of the art clustering methods regarding control messages overhead, cluster count, reaffiliation rate, and cluster lifetime

    Towards Optimal Distributed Node Scheduling in a Multihop Wireless Network through Local Voting

    Full text link
    In a multihop wireless network, it is crucial but challenging to schedule transmissions in an efficient and fair manner. In this paper, a novel distributed node scheduling algorithm, called Local Voting, is proposed. This algorithm tries to semi-equalize the load (defined as the ratio of the queue length over the number of allocated slots) through slot reallocation based on local information exchange. The algorithm stems from the finding that the shortest delivery time or delay is obtained when the load is semi-equalized throughout the network. In addition, we prove that, with Local Voting, the network system converges asymptotically towards the optimal scheduling. Moreover, through extensive simulations, the performance of Local Voting is further investigated in comparison with several representative scheduling algorithms from the literature. Simulation results show that the proposed algorithm achieves better performance than the other distributed algorithms in terms of average delay, maximum delay, and fairness. Despite being distributed, the performance of Local Voting is also found to be very close to a centralized algorithm that is deemed to have the optimal performance
    corecore