4,893 research outputs found

    A Shared Ontology Approach to Semantic Representation of BIM Data

    Get PDF
    Architecture, engineering, construction and facility management (AEC-FM) projects involve a large number of participants that must exchange information and combine their knowledge for successful completion of a project. Currently, most of the AEC-FM domains store their information about a project in text documents or use XML, relational, or object-oriented formats that make information integration difficult. The AEC-FM industry is not taking advantage of the full potential of the Semantic Web for streamlining sharing, connecting, and combining information from different domains. The Semantic Web is designed to solve the information integration problem by creating a web of structured and connected data that can be processed by machines. It allows combining information from different sources with different underlying schemas distributed over the Internet. In the Semantic Web, all data instances and data schema are stored in a graph data store, which makes it easy to merge data from different sources. This paper presents a shared ontology approach to semantic representation of building information. The semantic representation of building information facilitates finding and integrating building information distributed in several knowledge bases. A case study demonstrates the development of a semantic based building design knowledge base

    An Ontology-Based Data Integration System for Data and Multimedia Sources

    Get PDF
    Data integration is the problem of combining data residing at distributed heterogeneous sources, including multimedia sources, and providing the user with a unified view of these data. Ontology based Data Integration involves the use of ontology(s) to effectively combine data and information from multiple heterogeneous sources [16]. Ontologies, with respect to the integration of data sources, can be used for the identification and association of semantically correspond- ing information concepts, i.e. for the definition of semantic mappings among concepts of the information sources. MOMIS is a Data Integration System which performs in-formation extraction and integration from both structured and semi- structured data sources [6]. In [5] MOMIS was extended to manage “traditional” and “multimedia” data sources at the same time. STASIS is a comprehensive application suite which allows enterprises to simplify the mapping process between data schemas based on semantics [1]. Moreover, in STASIS, a general framework to perform Ontology-driven Semantic Mapping has been pro-posed [7]. This paper describes the early effort to combine the MOMIS and the STASIS frameworks in order to obtain an effective approach for Ontology-Based Data Integration for data and multimedia sources

    Biomedical data integration in computational drug design and bioinformatics

    Get PDF
    [Abstract In recent years, in the post genomic era, more and more data is being generated by biological high throughput technologies, such as proteomics and transcriptomics. This omics data can be very useful, but the real challenge is to analyze all this data, as a whole, after integrating it. Biomedical data integration enables making queries to different, heterogeneous and distributed biomedical data sources. Data integration solutions can be very useful not only in the context of drug design, but also in biomedical information retrieval, clinical diagnosis, system biology, etc. In this review, we analyze the most common approaches to biomedical data integration, such as federated databases, data warehousing, multi-agent systems and semantic technology, as well as the solutions developed using these approaches in the past few years.Red Gallega de Investigación sobre Cáncer Colorrectal; Ref. 2009/58Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo; 209RT- 0366Instituto de Salud Carlos III; PIO52048Instituto de Salud Carlos III; RD07/0067/0005Ministerio de Industria, Turismo y Comercio; TSI-020110-2009-

    Scaling Heterogeneous Databases and the Design of Disco

    Get PDF
    Access to large numbers of data sources introduces new problems for users of heterogeneous distributed databases. End users and application programmers must deal with unavailable data sources. Database administrators must deal with incorporating new sources into the model. Database implementors must deal with the translation of queries between query languages and schemas. The Distributed Information Search COmponent (Disco) 1 addresses these problems. Query processing semantics are developed to process queries over data sources which do not return answers. Data modeling techniques manage connections to data sources. The component interface to data sources flexibly handles different query languages and translates queries. This paper describes (a) the distributed mediator architecture ofDisco, (b) its query processing semantics, (c) the data model and its modeling of data source connections, and (d) the interface to underlying data sources. 1
    • …
    corecore