1,358 research outputs found

    File Tracking For Mobile Devices

    Get PDF
    Since 2010, the smart device has become an integral part of people’s daily lives. The popularity of smart devices has increased dramatically. However, as the number of devices owned by an individual user increases, so does the risk of data leakage and loss. This problem has started to draw attention because the data contained on smart devices tends to be personal or sensitive in nature. Many people have so much data on their devices that they have no idea as to what they are missing when a device is lost. Although there are already some solutions for data recovery, a data backup system on a remote server, these solutions are not accessible in the non-Internet environment. Development of a data recovery system that is accessible in the non-Internet environment is essential because of the constraints of mobile devices, such as unreliable network. This research proposes an architecture that allows the data recovery in both Internet (cloud) and Non-Internet (local) network by using different connection technologies. A data tracking mechanism has also been designed to monitor data flow among multiple devices, such as the cloud server, mobile devices, and tablets. Additionally, a synchronization system has been developed to ensure the consistency of tracking information. By designing and implementing this architecture, the two problems regarding to the data: "what is where" and "who has what" are resolved

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Ubiquitous Computing for Remote Cardiac Patient Monitoring: A Survey

    Get PDF
    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation

    Mobile Multimedia Streaming Library

    Get PDF
    In recent years, multimedia has become a commonly used tool for presenting contents to the users. The employment of multimedia is no longer limited to only the entertainment industry, but spans in other areas as well. In academics, lectures are recorded to audio and video for storage and distribution to students. Free online multimedia hosting services are popularly cherished, such as “youtube.com” and “yahoo video”, and with the increasing affordability of digital camera, hundreds, or maybe thousands, of home-made videos and music audio are created daily and published online. Low-cost digital recorders such as webcams also help promote the use of video for surveillance, both for commercial and personal use. Suddenly, there comes the need for digital multimedia delivery, which happens naturally with the advancement in Internet bandwidth and the popularity of multimedia sharing. Multimedia delivery comes in two methods: downloading and streaming. Streaming requires more complex structure, but rewards with better user experience. Although streaming is the method of choice today, downloading is still useful in ad-hoc situation where streaming is not feasible. This project aims to provide streaming-like capability to mobile devices. Since mobile gadgets are limited in resources compared to personal computers (PC), streaming sometimes is the only way to deliver media contents to user. This work targets devices in the so-called “ad-hoc situation”, and also seeks to save the cost associated with multimedia streaming, which traditionally uses the operator wireless network, by using a LAN-connected proxy and the Bluetooth medium. It is also to serve the educational purpose in learning about multimedia streaming on cellular phones. This project experiments with several approaches to implement streaming on mobile phones. It discusses each approach in details. Finally, a library and a sample application are implemented to demonstrate the solution

    Ad hoc networking in a medical environment

    Get PDF

    Multi-purpose embedded communication gateway : system design and testbed implementation

    Get PDF
    Masteroppgave i Informasjons- og kommunikasjonsteknologi IKT590 Universitetet i Agder 2014This dissertation revolves around developing a multi-purpose embedded communication gateway. The gateway is equipped with multiple communication interfaces including Ethernet, Bluetooth, WiFi, Zigbee, LTE, and it can be configured and utilized for many purposes, such as a failover of an Ethernet cable via 4G in order to maintain the network connectivity. Raspberry Pi circuit board and the operating system Raspbian are selected as the hardware and the software platforms respectively. Different communication interfaces are coordinated by the Raspberry Pi and are configured via Linux scripts according to various use cases. Furthermore, a hardware watchdog is adopted to enhance the availability of system. In addition, the system is encapsulated into a box to increase its portability. The system is validated and evaluated through rigorous test-bed experiments. Experiment results indicate that the developed router works smoothly and reliably in environments with little electrical disturbances

    Wireless remote patient monitoring on general hospital wards.

    Get PDF
    A novel approach which has potential to improve quality of patient care on general hospital wards is proposed. Patient care is a labour-intensive task that requires high input of human resources. A Remote Patient Monitoring (RPM) system is proposed which can go some way towards improving patient monitoring on general hospital wards. In this system vital signs are gathered from patients and sent to a control unit for centralized monitoring. The RPM system can complement the role of nurses in monitoring patients’ vital signs. They will be able to focus on holistic needs of patients thereby providing better personal care. Wireless network technologies, ZigBee and Wi-Fi, are utilized for transmission of vital signs in the proposed RPM system. They provide flexibility and mobility to patients. A prototype system for RPM is designed and simulated. The results illustrated the capability, suitability and limitation of the chosen technology

    A Simplified Secure Programming Platform for Internet of Things Devices

    Get PDF
    The emerging Internet of Things (IoT) revolution has introduced many useful applications that are utilized in our daily lives. Users can program these devices in order to develop their own IoT applications; however, the platforms and languages that are used during development are abounding, complicated, and time-consuming. The software solution provided in this thesis, PROVIZ+, is a secure sensor application development software suite that helps users create sophisticated and secure IoT applications with little software and hardware experience. Moreover, a simple and efficient domain-specific programming language, namely Panther language, was designed for IoT application development to unify existing programming languages. In addition to these contributions, PROVIZ+ supports a novel secure over-the-air programming framework, namely SOTA, using Bluetooth and WiFi as well as serial programming. In this thesis, we explain the features of PROVIZ+’s components, how these tools can help develop IoT applications, and SOTA. We also present the performance evaluations of PROVIZ+ and SOTA

    Bluetooth audio and video streaming on the J2ME platform

    Get PDF
    With the increase in bandwidth, more widespread distribution of media, and increased capability of mobile devices, multimedia streaming has not only become feasible, but more economical in terms of space occupied by the media file and the costs involved in attaining it. Although much attention has been paid to peer to peer media streaming over the Internet using HTTP and RTSP, little research has focussed on the use of the Bluetooth protocol for streaming audio and video between mobile devices. This project investigates the feasibility of Bluetooth as a protocol for audio and video streaming between mobile phones using the J2ME platform, through the analysis of Bluetooth protocols, media formats, optimum packet sizes, and the effects of distance on transfer speed. A comparison was made between RFCOMM and L2CAP to determine which protocol could support the fastest transfer speed between two mobile devices. The L2CAP protocol proved to be the most suitable, providing average transfer rates of 136.17 KBps. Using this protocol a second experiment was undertaken to determine the most suitable media format for streaming in terms of: file size, bandwidth usage, quality, and ease of implementation. Out of the eight media formats investigated, the MP3 format provided the smallest file size, smallest bandwidth usage, best quality and highest ease of implementation. Another experiment was conducted to determine the optimum packet size for transfer between devices. A tradeoff was found between packet size and the quality of the sound file, with highest transfer rates being recorded with the MTU size of 668 bytes (136.58 KBps). The class of Bluetooth transmitter typically used in mobile devices (class 2) is considered a weak signal and is adversely affected by distance. As such, the final investigation that was undertaken was aimed at determining the effects of distance on audio streaming and playback. As can be expected, when devices were situated close to each other, the transfer speeds obtained were higher than when devices were far apart. Readings were taken at varying distances (1-15 metres), with erratic transfer speeds observed from 7 metres onwards. This research showed that audio streaming on the J2ME platform is feasible, however using the currently available class of Bluetooth transmitter, video streaming is not feasible. Video files were only playable once the entire media file had been transferred
    corecore