748 research outputs found

    Using swarm intelligence for distributed job scheduling on the grid

    Get PDF
    With the rapid growth of data and computational needs, distributed systems and computational Grids are gaining more and more attention. Grids are playing an important and growing role in today networks. The huge amount of computations a Grid can fulfill in a specific time cannot be done by the best super computers. However, Grid performance can still be improved by making sure all the resources available in the Grid are utilized by a good load balancing algorithm. The purpose of such algorithms is to make sure all nodes are equally involved in Grid computations. This research proposes two new distributed swarm intelligence inspired load balancing algorithms. One is based on ant colony optimization and is called AntZ, the other one is based on particle swarm optimization and is called ParticleZ. Distributed load balancing does not incorporate a single point of failure in the system. In the AntZ algorithm, an ant is invoked in response to submitting a job to the Grid and this ant surfs the network to find the best resource to deliver the job to. In the ParticleZ algorithm, each node plays a role as a particle and moves toward other particles by sharing its workload among them. We will be simulating our proposed approaches using a Grid simulation toolkit (GridSim) dedicated to Grid simulations. The performance of the algorithms will be evaluated using several performance criteria (e.g. makespan and load balancing level). A comparison of our proposed approaches with a classical approach called State Broadcast Algorithm and two random approaches will also be provided. Experimental results show the proposed algorithms (AntZ and ParticleZ) can perform very well in a Grid environment. In particular, the use of particle swarm optimization, which has not been addressed in the literature, can yield better performance results in many scenarios than the ant colony approach

    Machine Learning for Unmanned Aerial System (UAS) Networking

    Get PDF
    Fueled by the advancement of 5G new radio (5G NR), rapid development has occurred in many fields. Compared with the conventional approaches, beamforming and network slicing enable 5G NR to have ten times decrease in latency, connection density, and experienced throughput than 4G long term evolution (4G LTE). These advantages pave the way for the evolution of Cyber-physical Systems (CPS) on a large scale. The reduction of consumption, the advancement of control engineering, and the simplification of Unmanned Aircraft System (UAS) enable the UAS networking deployment on a large scale to become feasible. The UAS networking can finish multiple complex missions simultaneously. However, the limitations of the conventional approaches are still a big challenge to make a trade-off between the massive management and efficient networking on a large scale. With 5G NR and machine learning, in this dissertation, my contributions can be summarized as the following: I proposed a novel Optimized Ad-hoc On-demand Distance Vector (OAODV) routing protocol to improve the throughput of Intra UAS networking. The novel routing protocol can reduce the system overhead and be efficient. To improve the security, I proposed a blockchain scheme to mitigate the malicious basestations for cellular connected UAS networking and a proof-of-traffic (PoT) to improve the efficiency of blockchain for UAS networking on a large scale. Inspired by the biological cell paradigm, I proposed the cell wall routing protocols for heterogeneous UAS networking. With 5G NR, the inter connections between UAS networking can strengthen the throughput and elasticity of UAS networking. With machine learning, the routing schedulings for intra- and inter- UAS networking can enhance the throughput of UAS networking on a large scale. The inter UAS networking can achieve the max-min throughput globally edge coloring. I leveraged the upper and lower bound to accelerate the optimization of edge coloring. This dissertation paves a way regarding UAS networking in the integration of CPS and machine learning. The UAS networking can achieve outstanding performance in a decentralized architecture. Concurrently, this dissertation gives insights into UAS networking on a large scale. These are fundamental to integrating UAS and National Aerial System (NAS), critical to aviation in the operated and unmanned fields. The dissertation provides novel approaches for the promotion of UAS networking on a large scale. The proposed approaches extend the state-of-the-art of UAS networking in a decentralized architecture. All the alterations can contribute to the establishment of UAS networking with CPS

    Advances in Grid Computing

    Get PDF
    This book approaches the grid computing with a perspective on the latest achievements in the field, providing an insight into the current research trends and advances, and presenting a large range of innovative research papers. The topics covered in this book include resource and data management, grid architectures and development, and grid-enabled applications. New ideas employing heuristic methods from swarm intelligence or genetic algorithm and quantum encryption are considered in order to explain two main aspects of grid computing: resource management and data management. The book addresses also some aspects of grid computing that regard architecture and development, and includes a diverse range of applications for grid computing, including possible human grid computing system, simulation of the fusion reaction, ubiquitous healthcare service provisioning and complex water systems

    Mathematical analysis of scheduling policies in peer-to-peer video streaming networks

    Get PDF
    Las redes de pares son comunidades virtuales autogestionadas, desarrolladas en la capa de aplicación sobre la infraestructura de Internet, donde los usuarios (denominados pares) comparten recursos (ancho de banda, memoria, procesamiento) para alcanzar un fin común. La distribución de video representa la aplicación más desafiante, dadas las limitaciones de ancho de banda. Existen básicamente tres servicios de video. El más simple es la descarga, donde un conjunto de servidores posee el contenido original, y los usuarios deben descargar completamente este contenido previo a su reproducción. Un segundo servicio se denomina video bajo demanda, donde los pares se unen a una red virtual siempre que inicien una solicitud de un contenido de video, e inician una descarga progresiva en línea. El último servicio es video en vivo, donde el contenido de video es generado, distribuido y visualizado simultáneamente. En esta tesis se estudian aspectos de diseño para la distribución de video en vivo y bajo demanda. Se presenta un análisis matemático de estabilidad y capacidad de arquitecturas de distribución bajo demanda híbridas, asistidas por pares. Los pares inician descargas concurrentes de múltiples contenidos, y se desconectan cuando lo desean. Se predice la evolución esperada del sistema asumiendo proceso Poisson de arribos y egresos exponenciales, mediante un modelo determinístico de fluidos. Un sub-modelo de descargas secuenciales (no simultáneas) es globalmente y estructuralmente estable, independientemente de los parámetros de la red. Mediante la Ley de Little se determina el tiempo medio de residencia de usuarios en un sistema bajo demanda secuencial estacionario. Se demuestra teóricamente que la filosofía híbrida de cooperación entre pares siempre desempeña mejor que la tecnología pura basada en cliente-servidor

    A Review on Computational Intelligence Techniques in Cloud and Edge Computing

    Get PDF
    Cloud computing (CC) is a centralized computing paradigm that accumulates resources centrally and provides these resources to users through Internet. Although CC holds a large number of resources, it may not be acceptable by real-time mobile applications, as it is usually far away from users geographically. On the other hand, edge computing (EC), which distributes resources to the network edge, enjoys increasing popularity in the applications with low-latency and high-reliability requirements. EC provides resources in a decentralized manner, which can respond to users’ requirements faster than the normal CC, but with limited computing capacities. As both CC and EC are resource-sensitive, several big issues arise, such as how to conduct job scheduling, resource allocation, and task offloading, which significantly influence the performance of the whole system. To tackle these issues, many optimization problems have been formulated. These optimization problems usually have complex properties, such as non-convexity and NP-hardness, which may not be addressed by the traditional convex optimization-based solutions. Computational intelligence (CI), consisting of a set of nature-inspired computational approaches, recently exhibits great potential in addressing these optimization problems in CC and EC. This article provides an overview of research problems in CC and EC and recent progresses in addressing them with the help of CI techniques. Informative discussions and future research trends are also presented, with the aim of offering insights to the readers and motivating new research directions

    Conception d'un modèle architectural collaboratif pour l'informatique omniprésente à la périphérie des réseaux mobiles

    Get PDF
    Le progrès des technologies de communication pair-à-pair et sans fil a de plus en plus permis l’intégration de dispositifs portables et omniprésents dans des systèmes distribués et des architectures informatiques de calcul dans le paradigme de l’internet des objets. De même, ces dispositifs font l'objet d'un développement technologique continu. Ainsi, ils ont toujours tendance à se miniaturiser, génération après génération durant lesquelles ils sont considérés comme des dispositifs de facto. Le fruit de ces progrès est l'émergence de l'informatique mobile collaborative et omniprésente, notamment intégrée dans les modèles architecturaux de l'Internet des Objets. L’avantage le plus important de cette évolution de l'informatique est la facilité de connecter un grand nombre d'appareils omniprésents et portables lorsqu'ils sont en déplacement avec différents réseaux disponibles. Malgré les progrès continuels, les systèmes intelligents mobiles et omniprésents (réseaux, dispositifs, logiciels et technologies de connexion) souffrent encore de diverses limitations à plusieurs niveaux tels que le maintien de la connectivité, la puissance de calcul, la capacité de stockage de données, le débit de communications, la durée de vie des sources d’énergie, l'efficacité du traitement de grosses tâches en termes de partitionnement, d'ordonnancement et de répartition de charge. Le développement technologique accéléré des équipements et dispositifs de ces modèles mobiles s'accompagne toujours de leur utilisation intensive. Compte tenu de cette réalité, plus d'efforts sont nécessaires à la fois dans la conception structurelle tant au matériel et logiciel que dans la manière dont il est géré. Il s'agit d'améliorer, d'une part, l'architecture de ces modèles et leurs technologies de communication et, d'autre part, les algorithmes d'ordonnancement et d'équilibrage de charges pour effectuer leurs travaux efficacement sur leurs dispositifs. Notre objectif est de rendre ces modèles omniprésents plus autonomes, intelligents et collaboratifs pour renforcer les capacités de leurs dispositifs, leurs technologies de connectivité et les applications qui effectuent leurs tâches. Ainsi, nous avons établi un modèle architectural autonome, omniprésent et collaboratif pour la périphérie des réseaux. Ce modèle s'appuie sur diverses technologies de connexion modernes telles que le sans-fil, la radiocommunication pair-à-pair, et les technologies offertes par LoPy4 de Pycom telles que LoRa, BLE, Wi-Fi, Radio Wi-Fi et Bluetooth. L'intégration de ces technologies permet de maintenir la continuité de la communication dans les divers environnements, même les plus sévères. De plus, ce modèle conçoit et évalue un algorithme d'équilibrage de charge et d'ordonnancement permettant ainsi de renforcer et améliorer son efficacité et sa qualité de service (QoS) dans différents environnements. L’évaluation de ce modèle architectural montre des avantages tels que l’amélioration de la connectivité et l’efficacité d’exécution des tâches. Advances in peer-to-peer and wireless communication technologies have increasingly enabled the integration of mobile and pervasive devices into distributed systems and computing architectures in the Internet of Things paradigm. Likewise, these devices are subject to continuous technological development. Thus, they always tend to be miniaturized, generation after generation during which they are considered as de facto devices. The success of this progress is the emergence of collaborative mobiles and pervasive computing, particularly integrated into the architectural models of the Internet of Things. The most important benefit of this form of computing is the ease of connecting a large number of pervasive and portable devices when they are on the move with different networks available. Despite the continual advancements that support this field, mobile and pervasive intelligent systems (networks, devices, software and connection technologies) still suffer from various limitations at several levels such as maintaining connectivity, computing power, ability to data storage, communication speeds, the lifetime of power sources, the efficiency of processing large tasks in terms of partitioning, scheduling and load balancing. The accelerated technological development of the equipment and devices of these mobile models is always accompanied by their intensive use. Given this reality, it requires more efforts both in their structural design and management. This involves improving on the one hand, the architecture of these models and their communication technologies, and, on the other hand, the scheduling and load balancing algorithms for the work efficiency. The goal is to make these models more autonomous, intelligent, and collaborative by strengthening the different capabilities of their devices, their connectivity technologies and the applications that perform their tasks. Thus, we have established a collaborative autonomous and pervasive architectural model deployed at the periphery of networks. This model is based on various modern connection technologies such as wireless, peer-to-peer radio communication, and technologies offered by Pycom's LoPy4 such as LoRa, BLE, Wi-Fi, Radio Wi-Fi and Bluetooth. The integration of these technologies makes it possible to maintain the continuity of communication in the various environments, even the most severe ones. Within this model, we designed and evaluated a load balancing and scheduling algorithm to strengthen and improve its efficiency and quality of service (QoS) in different environments. The evaluation of this architectural model shows payoffs such as improvement of connectivity and efficiency of task executions

    Ant colony optimization algorithm for load balancing in grid computing

    Get PDF
    Managing resources in grid computing system is complicated due to the distributed and heterogeneous nature of the resources. This research proposes an enhancement of the ant colony optimization algorithm that caters for dynamic scheduling and load balancing in the grid computing system. The proposed algorithm is known as the enhance ant colony optimization (EACO). The algorithm consists of three new mechanisms that organize the work of an ant colony i.e. initial pheromone value mechanism, resource selection mechanism and pheromone update mechanism. The resource allocation problem is modelled as a graph that can be used by the ant to deliver its pheromone.This graph consists of four types of vertices which are job, requirement, resource and capacity that are used in constructing the grid resource management element. The proposed EACO algorithm takes into consideration the capacity of resources and the characteristics of jobs in determining the best resource to process a job. EACO selects the resources based on the pheromone value on each resource which is recorded in a matrix form. The initial pheromone value of each resource for each job is calculated based on the estimated transmission time and execution time of a given job.Resources with high pheromone value are selected to process the submitted jobs. Global pheromone update is performed after the completion of processing the jobs in order to reduce the pheromone value of resources.A simulation environment was developed using Java programming to test the performance of the proposed EACO algorithm against other ant based algorithm, in terms of resource utilization. Experimental results show that EACO produced better grid resource management solution
    • …
    corecore