3,985 research outputs found

    Componential coding in the condition monitoring of electrical machines Part 2: application to a conventional machine and a novel machine

    Get PDF
    This paper (Part 2) presents the practical application of componential coding, the principles of which were described in the accompanying Part 1 paper. Four major issues are addressed, including optimization of the neural network, assessment of the anomaly detection results, development of diagnostic approaches (based on the reconstruction error) and also benchmarking of componential coding with other techniques (including waveform measures, Fourier-based signal reconstruction and principal component analysis). This is achieved by applying componential coding to the data monitored from both a conventional induction motor and from a novel transverse flux motor. The results reveal that machine condition monitoring using componential coding is not only capable of detecting and then diagnosing anomalies but it also outperforms other conventional techniques in that it is able to separate very small and localized anomalies

    On-line transformer condition monitoring through diagnostics and anomaly detection

    Get PDF
    This paper describes the end-to-end components of an on-line system for diagnostics and anomaly detection. The system provides condition monitoring capabilities for two in- service transmission transformers in the UK. These transformers are nearing the end of their design life, and it is hoped that intensive monitoring will enable them to stay in service for longer. The paper discusses the requirements on a system for interpreting data from the sensors installed on site, as well as describing the operation of specific diagnostic and anomaly detection techniques employed. The system is deployed on a substation computer, collecting and interpreting site data on-line

    Time-series clustering for sensor fault detection in large-scale Cyber-Physical Systems

    Get PDF
    Large-scale Cyber-Physical Systems (CPSs) are information systems that involve a vast network of sensor nodes and other devices that stream observations in real-time and typically are deployed in uncontrolled, broad geographical terrains. Sensor node failures are inevitable and unpredictable events in large-scale CPSs, which compromise the integrity of the sensors measurements and potentially reduce the quality of CPSs services and raise serious concerns related to CPSs safety, reliability, performance, and security. While many studies were conducted to tackle the challenge of sensor nodes failure detection using domain-specific solutions, this paper proposes a novel sensor nodes failure detection approach and empirically evaluates its validity using a real-world case study. This paper investigates time-series clustering techniques as a feasible solution to identify sensor nodes malfunctions by detecting long-segmental outliers in their observations' time series. Three different time-series clustering techniques have been investigated using real-world observations collected from two various sensor node networks, one of which consists of 275 temperature sensors distributed around London. This study demonstrates that time-series clustering effectively detects sensor node's continuous (halting/repeating) and incipient faults. It also showed that the feature-based time series clustering technique is a more efficient long-segmental outliers detection mechanism compared to shape-based time-series clustering techniques such as DTW and K-Shape, mainly when applied to shorter time-series windows

    Fault Diagnosis and Failure Prognostics of Lithium-ion Battery based on Least Squares Support Vector Machine and Memory Particle Filter Framework

    Get PDF
    123456A novel data driven approach is developed for fault diagnosis and remaining useful life (RUL) prognostics for lithium-ion batteries using Least Square Support Vector Machine (LS-SVM) and Memory-Particle Filter (M-PF). Unlike traditional data-driven models for capacity fault diagnosis and failure prognosis, which require multidimensional physical characteristics, the proposed algorithm uses only two variables: Energy Efficiency (EE), and Work Temperature. The aim of this novel framework is to improve the accuracy of incipient and abrupt faults diagnosis and failure prognosis. First, the LSSVM is used to generate residual signal based on capacity fade trends of the Li-ion batteries. Second, adaptive threshold model is developed based on several factors including input, output model error, disturbance, and drift parameter. The adaptive threshold is used to tackle the shortcoming of a fixed threshold. Third, the M-PF is proposed as the new method for failure prognostic to determine Remaining Useful Life (RUL). The M-PF is based on the assumption of the availability of real-time observation and historical data, where the historical failure data can be used instead of the physical failure model within the particle filter. The feasibility of the framework is validated using Li-ion battery prognostic data obtained from the National Aeronautic and Space Administration (NASA) Ames Prognostic Center of Excellence (PCoE). The experimental results show the following: (1) fewer data dimensions for the input data are required compared to traditional empirical models; (2) the proposed diagnostic approach provides an effective way of diagnosing Li-ion battery fault; (3) the proposed prognostic approach can predict the RUL of Li-ion batteries with small error, and has high prediction accuracy; and, (4) the proposed prognostic approach shows that historical failure data can be used instead of a physical failure model in the particle filter

    Artificial intelligence based condition monitoring of rail infrastructure

    Get PDF

    Lab non destructive test to analyze the effect of corrosion on ground penetrating radar scans

    Get PDF
    Corrosion is a significant damage in many reinforced concrete structures, mainly in coastal areas. The oxidation of embedded iron or steel elements degrades rebar, producing a porous layer not adhered to the metallic surface. This process could completely destroy rebar. In addition, the concrete around the metallic targets is also damaged, and a dense grid of fissures appears around the oxidized elements. The evaluation of corrosion is difficult in early stages, because damage is usually hidden. Non-destructive testing measurements, based on non-destructive testing (NDT) electric and magnetic surveys, could detect damage as consequence of corrosion. The work presented in this paper is based in several laboratory tests, which are centered in defining the effect of different corrosion stage on ground penetrating radar (GPR) signals. The analysis focuses on the evaluation of the reflected wave amplitude and its behavior. The results indicated that an accurate analysis of amplitude decay and intensity could most likely reveal an approach to the state of degradation of the embedded metallic targets because GPR images exhibit characteristics that depend on the effects of the oxidized rebar and the damaged concrete. These characteristics could be detected and measured in some cases. One important feature is referred to as the reflected wave amplitude. In the case of corroded targets, this amplitude is lower than in the case of reflection on non-oxidized surfaces. Additionally, in some cases, a blurred image appears related to high corrosion. The results of the tests highlight the higher amplitude decay of the cases of specimens with corroded elements.Peer ReviewedPostprint (published version

    Formal Executable Models for Automatic Detection of Timing Anomalies

    Get PDF
    A timing anomaly is a counterintuitive timing behavior in the sense that a local fast execution slows down an overall global execution. The presence of such behaviors is inconvenient for the WCET analysis which requires, via abstractions, a certain monotony property to compute safe bounds. In this paper we explore how to systematically execute a previously proposed formal definition of timing anomalies. We ground our work on formal designs of architecture models upon which we employ guided model checking techniques. Our goal is towards the automatic detection of timing anomalies in given computer architecture designs

    A sequential Bayesian approach to online power quality anomaly segmentation

    Get PDF
    Increased observability on power distribution networks can reveal signs of incipient faults which can develop into costly and unexpected plant failures. While low-cost sensing and communications infrastructure is facilitating this, it is also highlighting the complex nature of fault signals, a challenge which entails precisely extracting anomalous regions from continuous data streams before classifying the underlying fault signature. Doing this incorrectly will result in capture of uninformative data. Extraction processes can be confounded by operational noise on the network including harmonics produced by embedded generation. In this paper, an online model is proposed. Our Bayesian Changepoint Power Quality anomaly Segmentation allows automated segmentation of anomalies from continuous current waveforms, irrespective of noise. Demonstration of the effectiveness of the proposed technique is carried out with operational field data as well as a challenging simulated network, highlighting the ability to accommodate noise from typical network penetration levels of power electronic devices
    • 

    corecore