695 research outputs found

    Photonic Hall Effect in ferrofluids: Theory and Experiments

    Full text link
    An experimental and theoretical study on the Photonic Hall Effect (PHE) in liquid and gelled samples of ferrofluids is presented. The ferrofluids are aqueous colloidal suspensions of Fe(_{2})CoO(_{4}) particles, which can be considered as anisotropic and absorbing Rayleigh scatterers. The PHE is found to be produced by the orientation of the magnetic moments of the particles, as is also the case for the Faraday effect. The dependence of the PHE with respect to the concentration of the scatterers, the magnetic field and the polarization of the incident light is measured in liquid and in gelled samples and is compared to a simple model based on the use of a scattering matrix and the single scattering approximation.Comment: 20 pages, 11 figures, submitte

    Optical Current Sensors for High Power Systems: A Review

    Get PDF
    The intrinsic advantages of optical sensor technology are very appealing for high voltage applications and can become a valuable asset in a new generation of smart grids. In this paper the authors present a review of optical sensors technologies for electrical current metering in high voltage applications. A brief historical overview is given together with a more detailed focus on recent developments. Technologies addressed include all fiber sensors, bulk magneto-optical sensors, piezoelectric transducers, magnetic force sensors and hybrid sensors. The physical principles and main advantages and disadvantages are discussed. Configurations and strategies to overcome common problems, such as interference from external currents and magnetic fields induced linear birefringence and others are discussed. The state-of-the-art is presented including commercial available systems.info:eu-repo/semantics/publishedVersio

    Seeing spin dynamics in atomic gases

    Full text link
    The dynamics of internal spin, electronic orbital, and nuclear motion states of atoms and molecules have preoccupied the atomic and molecular physics community for decades. Increasingly, such dynamics are being examined within many-body systems composed of atomic and molecular gases. Our findings sometimes bear close relation to phenomena observed in condensed-matter systems, while on other occasions they represent truly new areas of investigation. I discuss several examples of spin dynamics that occur within spinor Bose-Einstein gases, highlighting the advantages of spin-sensitive imaging for understanding and utilizing such dynamics.Comment: Chapter in upcoming Review Volume entitled "From Atomic to Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities" from World Scientifi

    On Kottler's path: origin and evolution of the premetric program in gravity and in electrodynamics

    Full text link
    In 1922, Kottler put forward the program to remove the gravitational potential, the metric of spacetime, from the fundamental equations in physics as far as possible. He successfully applied this idea to Newton's gravitostatics and to Maxwell's electrodynamics, where Kottler recast the field equations in premetric form and specified a metric-dependent constitutive law. We will discuss the basics of the premetric approach and some of its beautiful consequences, like the division of universal constants into two classes. We show that classical electrodynamics can be developed without a metric quite straightforwardly: the Maxwell equations, together with a local and linear response law for electromagnetic media, admit a consistent premetric formulation. Kottler's program succeeds here without provisos. In Kottler's approach to gravity, making the theory relativistic, two premetric quasi-Maxwellian field equations arise, but their field variables, if interpreted in terms of general relativity, do depend on the metric. However, one can hope to bring the Kottler idea to work by using the teleparallelism equivalent of general relativity, where the gravitational potential, the coframe, can be chosen in a premetric way.Comment: 72 pages latex with 6 figures; based on an invited talk given at the Annual Meeting of the German Physical Society (DPG) in Berlin on 20 March 2015, Working Group on Philosophy of Physics (AGPhil); a short version will be submitted to IJMP

    Development of optical modulators for measurements of solar magnetic fields

    Get PDF
    The measurement of polarized light allows solar astronomers to infer the magnetic field on the Sun. The accuracy of these measurements is dependent on the stable retardation characteristics of the polarization modulators used to minimize the atmospheric effects seen in ground-based observations. This report describes the work by the Space Science Laboratory at Marshall Space Flight Center to improve two types of polarization modulators. As a result, the timing characteristics for both electrooptic crystals (KD*Ps) and liquid crystal devices (LCDs) have been studied and will be used to enhance the capabilities of the MSFC Vector Magnetograph

    Research Studies on Advanced Optical Module/Head Designs for Optical Disk Recording Devices

    Get PDF
    The Annual Report of the Optical Data Storage Center of the University of Arizona is presented. Summary reports on continuing projects are presented. Research areas include: magneto-optic media, optical heads, and signal processing

    Magnetic Field Sensor Based on a Combination of a Microfiber Coupler Covered with Magnetic Fluid and a Sagnac Loop

    Get PDF
    This paper proposes a novel magnetic field sensor based on a microfiber coupler (MFC) combined with a magnetic fluid (MF) in a Sagnac loop formed from a polarization maintaining fiber (PMF). Thanks to the small (~2.6μm) waist diameter of the MFC, the resulting interference is strongly influenced by the presence of the MF and this leads to the desirable high sensitivity of the structure to the applied magnetic field. The maximum magnetic field sensitivities of −100pm/mT and −488pm/mT have been experimentally demonstrated with the PMF lengths of 75cm and 20cm respectively in the range of magnetic field strengths from 0 to 200mT. The dependence of the magnetic field orientation on the performance of the proposed sensor was also examined. The proposed magnetic field sensor is advantageous for applications requiring higher sensitivity over a wide magnetic field range
    • …
    corecore