15 research outputs found

    A Maximum Resonant Set of Polyomino Graphs

    Full text link
    A polyomino graph HH is a connected finite subgraph of the infinite plane grid such that each finite face is surrounded by a regular square of side length one and each edge belongs to at least one square. In this paper, we show that if KK is a maximum resonant set of HH, then H−KH-K has a unique perfect matching. We further prove that the maximum forcing number of a polyomino graph is equal to its Clar number. Based on this result, we have that the maximum forcing number of a polyomino graph can be computed in polynomial time. We also show that if KK is a maximal alternating set of HH, then H−KH-K has a unique perfect matching.Comment: 13 pages, 6 figure

    The maximum forcing number of polyomino

    Full text link
    The forcing number of a perfect matching MM of a graph GG is the cardinality of the smallest subset of MM that is contained in no other perfect matchings of GG. For a planar embedding of a 2-connected bipartite planar graph GG which has a perfect matching, the concept of Clar number of hexagonal system had been extended by Abeledo and Atkinson as follows: a spanning subgraph CC of is called a Clar cover of GG if each of its components is either an even face or an edge, the maximum number of even faces in Clar covers of GG is called Clar number of GG, and the Clar cover with the maximum number of even faces is called the maximum Clar cover. It was proved that if GG is a hexagonal system with a perfect matching MM and K′K' is a set of hexagons in a maximum Clar cover of GG, then G−K′G-K' has a unique 1-factor. Using this result, Xu {\it et. at.} proved that the maximum forcing number of the elementary hexagonal system are equal to their Clar numbers, and then the maximum forcing number of the elementary hexagonal system can be computed in polynomial time. In this paper, we show that an elementary polyomino has a unique perfect matching when removing the set of tetragons from its maximum Clar cover. Thus the maximum forcing number of elementary polyomino equals to its Clar number and can be computed in polynomial time. Also, we have extended our result to the non-elementary polyomino and hexagonal system

    Tight upper bound on the maximum anti-forcing numbers of graphs

    Full text link
    Let GG be a simple graph with a perfect matching. Deng and Zhang showed that the maximum anti-forcing number of GG is no more than the cyclomatic number. In this paper, we get a novel upper bound on the maximum anti-forcing number of GG and investigate the extremal graphs. If GG has a perfect matching MM whose anti-forcing number attains this upper bound, then we say GG is an extremal graph and MM is a nice perfect matching. We obtain an equivalent condition for the nice perfect matchings of GG and establish a one-to-one correspondence between the nice perfect matchings and the edge-involutions of GG, which are the automorphisms α\alpha of order two such that vv and α(v)\alpha(v) are adjacent for every vertex vv. We demonstrate that all extremal graphs can be constructed from K2K_2 by implementing two expansion operations, and GG is extremal if and only if one factor in a Cartesian decomposition of GG is extremal. As examples, we have that all perfect matchings of the complete graph K2nK_{2n} and the complete bipartite graph Kn,nK_{n, n} are nice. Also we show that the hypercube QnQ_n, the folded hypercube FQnFQ_n (n≥4n\geq4) and the enhanced hypercube Qn,kQ_{n, k} (0≤k≤n−40\leq k\leq n-4) have exactly nn, n+1n+1 and n+1n+1 nice perfect matchings respectively.Comment: 15 pages, 7 figure

    Maximizing the minimum and maximum forcing numbers of perfect matchings of graphs

    Full text link
    Let GG be a simple graph with 2n2n vertices and a perfect matching. The forcing number f(G,M)f(G,M) of a perfect matching MM of GG is the smallest cardinality of a subset of MM that is contained in no other perfect matching of GG. Among all perfect matchings MM of GG, the minimum and maximum values of f(G,M)f(G,M) are called the minimum and maximum forcing numbers of GG, denoted by f(G)f(G) and F(G)F(G), respectively. Then f(G)≤F(G)≤n−1f(G)\leq F(G)\leq n-1. Che and Chen (2011) proposed an open problem: how to characterize the graphs GG with f(G)=n−1f(G)=n-1. Later they showed that for bipartite graphs GG, f(G)=n−1f(G)=n-1 if and only if GG is complete bipartite graph Kn,nK_{n,n}. In this paper, we solve the problem for general graphs and obtain that f(G)=n−1f(G)=n-1 if and only if GG is a complete multipartite graph or Kn,n+K^+_{n,n} (Kn,nK_{n,n} with arbitrary additional edges in the same partite set). For a larger class of graphs GG with F(G)=n−1F(G)=n-1 we show that GG is nn-connected and a brick (3-connected and bicritical graph) except for Kn,n+K^+_{n,n}. In particular, we prove that the forcing spectrum of each such graph GG is continued by matching 2-switches and the minimum forcing numbers of all such graphs GG form an integer interval from ⌊n2⌋\lfloor\frac{n}{2}\rfloor to n−1n-1

    Relations between global forcing number and maximum anti-forcing number of a graph

    Full text link
    The global forcing number of a graph G is the minimal cardinality of an edge subset discriminating all perfect matchings of G, denoted by gf(G). For any perfect matching M of G, the minimal cardinality of an edge subset S in E(G)-M such that G-S has a unique perfect matching is called the anti-forcing number of M,denoted by af(G, M). The maximum anti-forcing number of G among all perfect matchings is denoted by Af(G). It is known that the maximum anti-forcing number of a hexagonal system equals the famous Fries number. We are interested in some comparisons between the global forcing number and the maximum anti-forcing number of a graph. For a bipartite graph G, we show that gf(G)is larger than or equal to Af(G). Next we mainly extend such result to non-bipartite graphs, which is the set of all graphs with a perfect matching which contain no two disjoint odd cycles such that their deletion results in a subgraph with a perfect matching. For any such graph G, we also have gf(G) is larger than or equal to Af(G) by revealing further property of non-bipartite graphs with a unique perfect matching. As a consequence, this relation also holds for the graphs whose perfect matching polytopes consist of non-negative 1-regular vectors. In particular, for a brick G, de Carvalho, Lucchesi and Murty [4] showed that G satisfying the above condition if and only if G is solid, and if and only if its perfect matching polytope consists of non-negative 1-regular vectors. Finally, we obtain tight upper and lower bounds on gf(G)-Af(G). For a connected bipartite graph G with 2n vertices, we have that 0 \leq gf(G)-Af(G) \leq 1/2 (n-1)(n-2); For non-bipartite case, -1/2 (n^2-n-2) \leq gf(G)-Af(G) \leq (n-1)(n-2).Comment: 19 pages, 11 figure

    Acta Cybernetica : Volume 16. Number 4.

    Get PDF

    Subject Index Volumes 1–200

    Get PDF

    Sparse and random sampling techniques for high-resolution, full-field, bss-based structural dynamics identification from video

    Get PDF
    Video-based techniques for identification of structural dynamics have the advantage that they are very inexpensive to deploy compared to conventional accelerometer or strain gauge techniques. When structural dynamics from video is accomplished using full-field, high-resolution analysis techniques utilizing algorithms on the pixel time series such as principal components analysis and solutions to blind source separation the added benefit of high-resolution, full-field modal identification is achieved. An important property of video of vibrating structures is that it is particularly sparse. Typically video of vibrating structures has a dimensionality consisting of many thousands or even millions of pixels and hundreds to thousands of frames. However the motion of the vibrating structure can be described using only a few mode shapes and their associated time series. As a result, emerging techniques for sparse and random sampling such as compressive sensing should be applicable to performing modal identification on video. This work presents how full-field, high-resolution, structural dynamics identification frameworks can be coupled with compressive sampling. The techniques described in this work are demonstrated to be able to recover mode shapes from experimental video of vibrating structures when 70% to 90% of the frames from a video captured in the conventional manner are removed
    corecore