2,121 research outputs found

    A maximum entropy approach to OFDM channel estimation

    Full text link
    In this work, a new Bayesian framework for OFDM channel estimation is proposed. Using Jaynes' maximum entropy principle to derive prior information, we successively tackle the situations when only the channel delay spread is a priori known, then when it is not known. Exploitation of the time-frequency dimensions are also considered in this framework, to derive the optimal channel estimation associated to some performance measure under any state of knowledge. Simulations corroborate the optimality claim and always prove as good or better in performance than classical estimators.Comment: 15 pages, 11 figure

    Bayesian Foundations of Channel Estimation for Smart Radios

    No full text
    International audienceIn this paper, we revisit the philosophical foundations of the field of channel estimation. Our main intention is to come up with a partial answer to the question: ``given some available sensed signals, how should cognitive radios ideally perform channel estimation?''. We specifically introduce a general framework to provide optimal channel estimates under any prior knowledge at the sensing device. Our discussion is articulated as a top-down approach, introducing successively (i) a discussion on the philosophical foundations of channel estimation as a simplification means for the general problem of wireless detection, (ii) an information theoretically optimal approach to channel detection assuming the sensing device has infinite memory, and (iii) a derived optimal approach when limited memory size is accounted for. The key mathematical tools used in this discussion emerge from Bayesian probability theory and are known as the maximum entropy principle and the minimum update principle. Derivations are carried out for the particular case of channel estimation in orthogonal frequency division multiplexing (OFDM) systems. While some theoretical results will be proven to match already known techniques, such as Kalman filters, another set of novel results will be shown by simulations to perform better than known channel estimation schemes

    AoA-aware Probabilistic Indoor Location Fingerprinting using Channel State Information

    Full text link
    With expeditious development of wireless communications, location fingerprinting (LF) has nurtured considerable indoor location based services (ILBSs) in the field of Internet of Things (IoT). For most pattern-matching based LF solutions, previous works either appeal to the simple received signal strength (RSS), which suffers from dramatic performance degradation due to sophisticated environmental dynamics, or rely on the fine-grained physical layer channel state information (CSI), whose intricate structure leads to an increased computational complexity. Meanwhile, the harsh indoor environment can also breed similar radio signatures among certain predefined reference points (RPs), which may be randomly distributed in the area of interest, thus mightily tampering the location mapping accuracy. To work out these dilemmas, during the offline site survey, we first adopt autoregressive (AR) modeling entropy of CSI amplitude as location fingerprint, which shares the structural simplicity of RSS while reserving the most location-specific statistical channel information. Moreover, an additional angle of arrival (AoA) fingerprint can be accurately retrieved from CSI phase through an enhanced subspace based algorithm, which serves to further eliminate the error-prone RP candidates. In the online phase, by exploiting both CSI amplitude and phase information, a novel bivariate kernel regression scheme is proposed to precisely infer the target's location. Results from extensive indoor experiments validate the superior localization performance of our proposed system over previous approaches

    Deep Learning for Frame Error Probability Prediction in BICM-OFDM Systems

    Full text link
    In the context of wireless communications, we propose a deep learning approach to learn the mapping from the instantaneous state of a frequency selective fading channel to the corresponding frame error probability (FEP) for an arbitrary set of transmission parameters. We propose an abstract model of a bit interleaved coded modulation (BICM) orthogonal frequency division multiplexing (OFDM) link chain and show that the maximum likelihood (ML) estimator of the model parameters estimates the true FEP distribution. Further, we exploit deep neural networks as a general purpose tool to implement our model and propose a training scheme for which, even while training with the binary frame error events (i.e., ACKs / NACKs), the network outputs converge to the FEP conditioned on the input channel state. We provide simulation results that demonstrate gains in the FEP prediction accuracy with our approach as compared to the traditional effective exponential SIR metric (EESM) approach for a range of channel code rates, and show that these gains can be exploited to increase the link throughput.Comment: Submitted to 2018 IEEE International Conference on Acoustics, Speech and Signal Processin

    Power Allocation and Time-Domain Artificial Noise Design for Wiretap OFDM with Discrete Inputs

    Full text link
    Optimal power allocation for orthogonal frequency division multiplexing (OFDM) wiretap channels with Gaussian channel inputs has already been studied in some previous works from an information theoretical viewpoint. However, these results are not sufficient for practical system design. One reason is that discrete channel inputs, such as quadrature amplitude modulation (QAM) signals, instead of Gaussian channel inputs, are deployed in current practical wireless systems to maintain moderate peak transmission power and receiver complexity. In this paper, we investigate the power allocation and artificial noise design for OFDM wiretap channels with discrete channel inputs. We first prove that the secrecy rate function for discrete channel inputs is nonconcave with respect to the transmission power. To resolve the corresponding nonconvex secrecy rate maximization problem, we develop a low-complexity power allocation algorithm, which yields a duality gap diminishing in the order of O(1/\sqrt{N}), where N is the number of subcarriers of OFDM. We then show that independent frequency-domain artificial noise cannot improve the secrecy rate of single-antenna wiretap channels. Towards this end, we propose a novel time-domain artificial noise design which exploits temporal degrees of freedom provided by the cyclic prefix of OFDM systems {to jam the eavesdropper and boost the secrecy rate even with a single antenna at the transmitter}. Numerical results are provided to illustrate the performance of the proposed design schemes.Comment: 12 pages, 7 figures, accepted by IEEE Transactions on Wireless Communications, Jan. 201

    A comparison of digital transmission techniques under multichannel conditions at 2.4 GHz in the ISM BAND

    Get PDF
    In order to meet the observation quality criteria of micro-UAVs, and particularly in the context of the « Trophée Micro-Drones », ISAE/SUPAERO is studying technical solutions to transmit a high data rate from a video payload onboard a micro-UAV. The laboratory has to consider the impact of multipath and shadowing effects on the emitted signal. Therefore fading resistant transmission techniques are considered. This techniques paper have to reveal an optimum trade-off between three parameters, namely: the characteristics of the video stream, the complexity of the modulation and coding scheme, and the efficiency of the transmission, in term of BER
    • …
    corecore