846 research outputs found

    Diameters of commuting graphs of matrices over semirings

    Full text link
    We calculate the diameters of commuting graphs of matrices over the binary Boolean semiring, the tropical semiring and an arbitrary nonentire commutative semiring. We also find the lower bound for the diameter of the commuting graph of the semiring of matrices over an arbitrary commutative entire antinegative semiring.Comment: 8 page

    On the Pauli graphs of N-qudits

    Full text link
    A comprehensive graph theoretical and finite geometrical study of the commutation relations between the generalized Pauli operators of N-qudits is performed in which vertices/points correspond to the operators and edges/lines join commuting pairs of them. As per two-qubits, all basic properties and partitionings of the corresponding Pauli graph are embodied in the geometry of the generalized quadrangle of order two. Here, one identifies the operators with the points of the quadrangle and groups of maximally commuting subsets of the operators with the lines of the quadrangle. The three basic partitionings are (a) a pencil of lines and a cube, (b) a Mermin's array and a bipartite-part and (c) a maximum independent set and the Petersen graph. These factorizations stem naturally from the existence of three distinct geometric hyperplanes of the quadrangle, namely a set of points collinear with a given point, a grid and an ovoid, which answer to three distinguished subsets of the Pauli graph, namely a set of six operators commuting with a given one, a Mermin's square, and set of five mutually non-commuting operators, respectively. The generalized Pauli graph for multiple qubits is found to follow from symplectic polar spaces of order two, where maximal totally isotropic subspaces stand for maximal subsets of mutually commuting operators. The substructure of the (strongly regular) N-qubit Pauli graph is shown to be pseudo-geometric, i. e., isomorphic to a graph of a partial geometry. Finally, the (not strongly regular) Pauli graph of a two-qutrit system is introduced; here it turns out more convenient to deal with its dual in order to see all the parallels with the two-qubit case and its surmised relation with the generalized quadrangle Q(4, 3), the dual ofW(3).Comment: 17 pages. Expanded section on two-qutrits, Quantum Information and Computation (2007) accept\'

    The Largest Subsemilattices of the Endomorphism Monoid of an Independence Algebra

    Get PDF
    An algebra \A is said to be an independence algebra if it is a matroid algebra and every map \al:X\to A, defined on a basis XX of \A, can be extended to an endomorphism of \A. These algebras are particularly well behaved generalizations of vector spaces, and hence they naturally appear in several branches of mathematics such as model theory, group theory, and semigroup theory. It is well known that matroid algebras have a well defined notion of dimension. Let \A be any independence algebra of finite dimension nn, with at least two elements. Denote by \End(\A) the monoid of endomorphisms of \A. We prove that a largest subsemilattice of \End(\A) has either 2n12^{n-1} elements (if the clone of \A does not contain any constant operations) or 2n2^n elements (if the clone of \A contains constant operations). As corollaries, we obtain formulas for the size of the largest subsemilattices of: some variants of the monoid of linear operators of a finite-dimensional vector space, the monoid of full transformations on a finite set XX, the monoid of partial transformations on XX, the monoid of endomorphisms of a free GG-set with a finite set of free generators, among others. The paper ends with a relatively large number of problems that might attract attention of experts in linear algebra, ring theory, extremal combinatorics, group theory, semigroup theory, universal algebraic geometry, and universal algebra.Comment: To appear in Linear Algebra and its Application

    On the diameter of the commuting graph of the full matrix ring over the real numbers

    Get PDF
    In a recent paper C. Miguel proved that the diameter of the commuting graph of the matrix ring Mn(R) is equal to 4 if either n = 3 or n = 5. But the case n = 4 remained open, since the diameter could be 4 or 5. In this work we close the problem showing that also in this case the diameter is 4

    Limit groups and groups acting freely on R^n-trees

    Full text link
    We give a simple proof of the finite presentation of Sela's limit groups by using free actions on R^n-trees. We first prove that Sela's limit groups do have a free action on an R^n-tree. We then prove that a finitely generated group having a free action on an R^n-tree can be obtained from free abelian groups and surface groups by a finite sequence of free products and amalgamations over cyclic groups. As a corollary, such a group is finitely presented, has a finite classifying space, its abelian subgroups are finitely generated and contains only finitely many conjugacy classes of non-cyclic maximal abelian subgroups.Comment: Published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol8/paper39.abs.htm
    corecore