29 research outputs found

    A matheuristic method for the electric vehicle routing problem with time windows and fast chargers

    Get PDF
    The Electric Vehicle Routing Problem with Time Windows (EVRPTW) is an extension of the well-known VRPTW where electric vehicles (EVs) are used instead of internal combustion engine vehicles. An EV has a limited driving range due to its battery capacity and may need recharging to complete its route. Recharging can be made at any battery level and may be at any quantity up to the battery capacity. Furthermore, the stations may be equipped with chargers with different power supply, power voltage, maximum current options which affect the recharge duration. In this study, we model the EVRPTW by allowing partial recharges with three recharging configurations which can be referred to as normal, fast and super-fast recharges. In faster options, the battery is charged with the same energy in a shorter time but at a higher cost. Our objective is to minimize the total recharging cost while operating minimum number of vehicles. We formulated this problem as a mixed integer linear program and solved the small instances using CPLEX. To solve the larger problems, we develop a matheuristic approach which couples the Adaptive Large Neighborhood Search (ALNS) approach with an exact method. Our ALNS is equipped with various destroy-repair algorithms to efficiently explore the neighborhoods and uses CPLEX to strengthen the routes obtained. We carried out extensive experiments to investigate the benefits of fast recharges and test the performance of our algorithm using benchmark instances from the literature. The results show the effectiveness of the proposed matheuristic and demonstrate the benefits of fast chargers on the fleet size and energy costs

    The electric vehicle routing problem with capacitated charging stations

    Get PDF
    Much of the existing research on electric vehicle routing problems (E-VRPs) assumes that the charging stations (CSs) can simultaneously charge an unlimited number of electric vehicles, but this is not the case. In this research, we investigate how to model and solve E-VRPs taking into account these capacity restrictions. In particular, we study an E-VRP with non-linear charging functions, multiple charging technologies, en route charging, and variable charging quantities, while explicitly accounting for the capacity of CSs expressed in the number of chargers. We refer to this problem as the E-VRP with non-linear charging functions and capacitated stations (E-VRP-NL-C). This problem advances the E-VRP literature by considering the scheduling of charging operations at each CS. We first introduce two mixed integer linear programming formulations showing how CS capacity constraints can be incorporated into E-VRP models. We then introduce an algorithmic framework to the E-VRP-NL-C, that iterates between two main components: a route generator and a solution assembler. The route generator uses an iterated local search algorithm to build a pool of high-quality routes. The solution assembler applies a branch-and-cut algorithm to select a subset of routes from the pool. We report on computational experiments comparing four different assembly strategies on a large and diverse set of instances. Our results show that our algorithm deals with the CS capacity constraints effectively. Furthermore, considering the well-known uncapacitated version of the E-VRP-NL-C, our solution method identifies new best-known solutions for 80 out of 120 instances

    Recharge strategies for the electric vehicle routing problem with time windows in deterministic and stochastic environments

    Get PDF
    Due to increasing concerns about greenhouse gas emissions in recent years, many companies have had an interest in using alternative fuel vehicles in their fleets. Electric vehicles (EVs) are one of these vehicles and they have various advantages such as zero tailpipe emissions, low maintenance costs and low energy consumption. However, their acquisition costs are higher compared to the conventional vehicles and recharging the battery may take significant amount of time compared to the short fueling times. Hence, to overcome these challenges, logistics decisions have to be made effectively. The problem of planning EVs’ activities has been introduced to the literature as the Electric Vehicle Routing Problem (EVRP), which is a special case of the classical VRP where the fleet consists of EVs. The difference between this problem and the classical VRP is that vehicles have batteries as the energy source and the battery is being discharged while the EV is traveling. Hence, the EVs may recharge their batteries at the recharging stations to continue their routes. These stations are located at distant locations and there are few of them compared to the common fuel stations. Recharging may be performed at any level of the battery and the recharging time increases with the recharge amount. In some stations, there may be different chargers which vary in terms of charging speed. For instance, fast chargers recharge the battery faster, but they incur higher cost. Furthermore, EVs may wait in the queue at the stations since there may be other EVs which arrive earlier and wait for ii service. In this dissertation, we address four problems which consider these different features of the EVRP. First, we study the EVRP with Time Windows where the batteries can be recharged partially at the recharging stations. Second, we extend this problem where the recharging stations are equipped with multiple types of chargers which differ by recharging rates and unit recharging costs. Next, we consider a stochastic environment where an EV may wait in the queue before recharging due to other EVs that have arrived earlier at that station. The waiting times depend on the time of the visit during the day, i.e., they are longer in the rush hours. Furthermore, the recharging time is assumed to be a nonlinear function of the energy recharged. In the final problem, we consider random waiting times at the recharging stations. In this case, the EVs do not have information about the queue lengths of the stations before they arrive at. We propose Adaptive Large Neighborhood Search heuristics and matheuristics to solve these problems effectivel

    A Survey on Environmentally Friendly Vehicle Routing Problem and a Proposal of Its Classification

    Get PDF
    The growth of environmental awareness and more robust enforcement of numerous regulations to reduce greenhouse gas (GHG) emissions have directed efforts towards addressing current environmental challenges. Considering the Vehicle Routing Problem (VRP), one of the effective strategies to control greenhouse gas emissions is to convert the fossil fuel-powered fleet into Environmentally Friendly Vehicles (EFVs). Given the multitude of constraints and assumptions defined for different types of VRPs, as well as assumptions and operational constraints specific to each type of EFV, many variants of environmentally friendly VRPs (EF-VRP) have been introduced. In this paper, studies conducted on the subject of EF-VRP are reviewed, considering all the road transport EFV types and problem variants, and classifying and discussing with a single holistic vision. The aim of this paper is twofold. First, it determines a classification of EF-VRP studies based on different types of EFVs, i.e., Alternative-Fuel Vehicles (AFVs), Electric Vehicles (EVs) and Hybrid Vehicles (HVs). Second, it presents a comprehensive survey by considering each variant of the classification, technical constraints and solution methods arising in the literature. The results of this paper show that studies on EF-VRP are relatively novel and there is still room for large improvements in several areas. So, to determine future insights, for each classification of EF-VRP studies, the paper provides the literature gaps and future research needs

    Vehicle Dynamics in Pickup-And-Delivery Problems Using Electric Vehicles

    Get PDF
    Electric Vehicles (EVs) are set to replace vehicles based on internal combustion engines. Path planning and vehicle routing for EVs need to take their specific characteristics into account, such as reduced range, long charging times, and energy recuperation. This paper investigates the importance of vehicle dynamics parameters in energy models for EV routing, particularly in the Pickup-and-Delivery Problem (PDP). We use Constraint Programming (CP) technology to develop a complete PDP model with different charger technologies. We adapt realistic instances that consider vehicle dynamics parameters such as vehicle mass, road gradient and driving speed to varying degrees. The results of our experiments show that neglecting such fundamental vehicle dynamics parameters can affect the feasibility of planned routes for EVs, and fewer/shorter charging visits will be planned if we use energy-efficient paths instead of conventional shortest paths in the underlying system model

    Electric vehicle routing, arc routing, and team orienteering problems in sustainable transportation

    Full text link
    [EN] The increasing use of electric vehicles in road and air transportation, especially in last-mile delivery and city mobility, raises new operational challenges due to the limited capacity of electric batteries. These limitations impose additional driving range constraints when optimizing the distribution and mobility plans. During the last years, several researchers from the Computer Science, Artificial Intelligence, and Operations Research communities have been developing optimization, simulation, and machine learning approaches that aim at generating efficient and sustainable routing plans for hybrid fleets, including both electric and internal combustion engine vehicles. After contextualizing the relevance of electric vehicles in promoting sustainable transportation practices, this paper reviews the existing work in the field of electric vehicle routing problems. In particular, we focus on articles related to the well-known vehicle routing, arc routing, and team orienteering problems. The review is followed by numerical examples that illustrate the gains that can be obtained by employing optimization methods in the aforementioned field. Finally, several research opportunities are highlighted.This work has been partially supported by the Spanish Ministry of Science, Innovation, and Universities (PID2019-111100RB-C21-C22/AEI/10.13039/501100011033, RED2018-102642-T), the SEPIE Erasmus+Program (2019-I-ES01-KA103-062602), and the IoF2020-H2020 (731884) project.Do C. Martins, L.; Tordecilla, RD.; Castaneda, J.; Juan-Pérez, ÁA.; Faulin, J. (2021). Electric vehicle routing, arc routing, and team orienteering problems in sustainable transportation. Energies. 14(16):1-30. https://doi.org/10.3390/en14165131130141
    corecore