19,061 research outputs found

    Evolutionary robotics and neuroscience

    Get PDF
    No description supplie

    Annotated Bibliography: Anticipation

    Get PDF

    In silico case studies of compliant robots: AMARSI deliverable 3.3

    Get PDF
    In the deliverable 3.2 we presented how the morphological computing ap- proach can significantly facilitate the control strategy in several scenarios, e.g. quadruped locomotion, bipedal locomotion and reaching. In particular, the Kitty experimental platform is an example of the use of morphological computation to allow quadruped locomotion. In this deliverable we continue with the simulation studies on the application of the different morphological computation strategies to control a robotic system

    Integrating reinforcement learning, equilibrium points and minimum variance to understand the development of reaching: a computational model

    Get PDF
    Despite the huge literature on reaching behaviour we still lack a clear idea about the motor control processes underlying its development in infants. This article contributes to overcome this gap by proposing a computational model based on three key hypotheses: (a) trial-anderror learning processes drive the progressive development of reaching; (b) the control of the movements based on equilibrium points allows the model to quickly find the initial approximate solution to the problem of gaining contact with the target objects; (c) the request of precision of the end-movement in the presence of muscular noise drives the progressive refinement of the reaching behaviour. The tests of the model, based on a two degrees of freedom simulated dynamical arm, show that it is capable of reproducing a large number of empirical findings, most deriving from longitudinal studies with children: the developmental trajectory of several dynamical and kinematic variables of reaching movements, the time evolution of submovements composing reaching, the progressive development of a bell-shaped speed profile, and the evolution of the management of redundant degrees of freedom. The model also produces testable predictions on several of these phenomena. Most of these empirical data have never been investigated by previous computational models and, more importantly, have never been accounted for by a unique model. In this respect, the analysis of the model functioning reveals that all these results are ultimately explained, sometimes in unexpected ways, by the same developmental trajectory emerging from the interplay of the three mentioned hypotheses: the model first quickly learns to perform coarse movements that assure a contact of the hand with the target (an achievement with great adaptive value), and then slowly refines the detailed control of the dynamical aspects of movement to increase accuracy

    Backwards is the way forward: feedback in the cortical hierarchy predicts the expected future

    Get PDF
    Clark offers a powerful description of the brain as a prediction machine, which offers progress on two distinct levels. First, on an abstract conceptual level, it provides a unifying framework for perception, action, and cognition (including subdivisions such as attention, expectation, and imagination). Second, hierarchical prediction offers progress on a concrete descriptive level for testing and constraining conceptual elements and mechanisms of predictive coding models (estimation of predictions, prediction errors, and internal models)

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available
    • …
    corecore