139 research outputs found

    Numerical analysis of a mechanotransduction dynamical model reveals homoclinic bifurcations of extracellular matrix mediated oscillations of the mesenchymal stem cell fate

    Full text link
    We perform one and two-parameter numerical bifurcation analysis of a mechanotransduction model approximating the dynamics of mesenchymal stem cell differentiation into neurons, adipocytes, myocytes and osteoblasts. For our analysis, we use as bifurcation parameters the stiffness of the extracellular matrix and parameters linked with the positive feedback mechanisms that up-regulate the production of the YAP/TAZ transcriptional regulators (TRs) and the cell adhesion area. Our analysis reveals a rich nonlinear behaviour of the cell differentiation including regimes of hysteresis and multistability, stable oscillations of the effective adhesion area, the YAP/TAZ TRs and the PPARÎł\gamma receptors associated with the adipogenic fate, as well as homoclinic bifurcations that interrupt relatively high-amplitude oscillations abruptly. The two-parameter bifurcation analysis of the Andronov-Hopf points that give birth to the oscillating patterns predicts their existence for soft extracellular substrates (<1kPa<1kPa), a regime that favours the neurogenic and the adipogenic cell fate. Furthermore, in these regimes, the analysis reveals the presence of homoclinic bifurcations that result in the sudden loss of the stable oscillations of the cell-substrate adhesion towards weaker adhesion and high expression levels of the gene encoding Tubulin beta-3 chain, thus favouring the phase transition from the adipogenic to the neurogenic fate

    Single-Fluorophore Sensors for Mechanical Force in Living Cells

    Get PDF
    Mechanotransduction is the process by which a mechanical stimulus is converted to a cellular signal. This process is heavily influential of cell morphology, differentiation, and behavior. However, altered levels of mechanical stimuli are also found in many pathological contexts. For example, cancerous cells have stiffer surrounding tissue than healthy cells, and research suggests that this alters cell behavior and promotes metastasis. Despite these findings, the cellular processes behind these signaling alterations remain widely unknown. Understanding these cascades is critical, as involved proteins can give us a deeper understanding of the role of mechanotransduction, and certain proteins can potentially be targeted by drug therapeutics. This thesis reviews existing methods used to study mechanotransduction and force within the cell, and specifically investigates the benefits of single-fluorophore tension probes. Moreover, the idea of a novel tension probe, based on protein-protein interactions and bond-breaking, is introduced and developmental steps are outlined

    A guide to mechanobiology: Where biology and physics meet

    Get PDF
    AbstractCells actively sense and process mechanical information that is provided by the extracellular environment to make decisions about growth, motility and differentiation. It is important to understand the underlying mechanisms given that deregulation of the mechanical properties of the extracellular matrix (ECM) is implicated in various diseases, such as cancer and fibrosis. Moreover, matrix mechanics can be exploited to program stem cell differentiation for organ-on-chip and regenerative medicine applications. Mechanobiology is an emerging multidisciplinary field that encompasses cell and developmental biology, bioengineering and biophysics. Here we provide an introductory overview of the key players important to cellular mechanobiology, taking a biophysical perspective and focusing on a comparison between flat versus three dimensional substrates. This article is part of a Special Issue entitled: Mechanobiology

    Revealing hidden information in osteoblast’s mechanotransduction through analysis of time patterns of critical events

    Get PDF
    Background Mechanotransduction in bone cells plays a pivotal role in osteoblast differentiation and bone remodelling. Mechanotransduction provides the link between modulation of the extracellular matrix by mechanical load and intracellular activity. By controlling the balance between the intracellular and extracellular domains, mechanotransduction determines the optimum functionality of skeletal dynamics. Failure of this relationship was suggested to contribute to bone-related diseases such as osteoporosis. Results A hybrid mechanical and agent-based model (Mech-ABM), simulating mechanotransduction in a single osteoblast under external mechanical perturbations, was utilised to simulate and examine modulation of the activation dynamics of molecules within mechanotransduction on the cellular response to mechanical stimulation. The number of molecules and their fluctuations have been analysed in terms of recurrences of critical events. A numerical approach has been developed to invert subordination processes and to extract the direction processes from the molecular signals in order to derive the distribution of recurring events. These predict that there are large fluctuations enclosing information hidden in the noise which is beyond the dynamic variations of molecular baselines. Moreover, studying the system under different mechanical load regimes and altered dynamics of feedback loops, illustrate that the waiting time distributions of each molecule are a signature of the system’s state. Conclusions The behaviours of the molecular waiting times change with the changing of mechanical load regimes and altered dynamics of feedback loops, presenting the same variation of patterns for similar interacting molecules and identifying specific alterations for key molecules in mechanotransduction. This methodology could be used to provide a new tool to identify potent molecular candidates to modulate mechanotransduction, hence accelerate drug discovery towards therapeutic targets for bone mass upregulation

    Engineering patterned and dynamic surfaces for the spatio-temporal control of cell behaviour

    Get PDF
    Stem cell shape and mechanical properties in vitro can be directed by geometrically defined micropatterned adhesion substrates. However conventional methods are limited by the fixed micropattern design, which cannot recapitulate the dynamic changes of the natural cell microenvironment. Recent advancements in microfabrication technologies in combination with the use of light-responsive materials, allow to manipulate the shape of living cells in real-time in a non-invasive Spatio-temporal controlled way to introduce additional geometrically defined adhesion sites and to study relative cell behaviour. Here, the confocal laser technique is exploited for dynamically evaluate the variation over time of the tensional and morphological cell state. This method allows the precise control of specific actin structures that regulate cell architecture. Actin filament bundles, initially randomly organized in circular-shaped cells, are induced to align and distribute to form a rectangular-shaped cell in response to specific dynamic changes in the cell adhesion pattern. The changes in morphology also reflect dramatic changes in FAs distribution, cell mechanics, nuclear morphology, and chromatin conformation. The reported strategy is convenient to explore the cell-substrate interface and the mechanisms through which cell geometry regulates cell signalling in a facile and cost-effective manner and it open new routes to understand how the field of dynamic platforms should potentially contribute to unveil complex biological events such as the modulation of cell shape

    Investigating physical factors that regulate morphogenesis and fate of mouse embryonic midline sutures

    Get PDF
    Stem cells are crucial players during development, homeostasis and tissue regeneration and their interactions with the surrounding microenvironment are key to regulate stem cell fate. The skull's stem cell niches reside in the fibrous joints that connect flat bones of the skull. In the embryo, bone and sutures develop in concert to form a complex, multi-facted structure that requires interaction with multiple differentiating cell types to maintain balance between growth and differentiation. Disruption of this balance drives changes in size and shape of skull bones and can severely impact quality of life. Cranial sutures, often seen as simple extracellular matrix-rich structures bridging the rigid plates of the skull, are major actors in craniofacial morphogenesis of as they harmonize bone growth with expansion of the developing brain and participate in providing osteoblasts during repair. The complexity of the extracellular environment and the important role for sutures in skeletal development makes these niches a compelling structure to investigate how interactions with the surrounding microenvironment can modulate stem cells fate. The key role of sutures in development is highlighted by the numerous severe dysmorphisms arising from failure to maintain suture patency. The ability of the suture to respond to brain growth or trauma and the dysmophisms presented by patients with defective sutures is mediated by both biochemical and mechanical cues but the cell biology of these niches remains elusive, especially during their development. In particular, few studies have shed light on the underlying cellular behaviors behind microenvironmental regulation of cranial suture stem cell fate and what role mechanical inputs play in the establishment of this niche. In my thesis, I addressed gaps in our understanding of suture biology by characterizing the suture stem cell niche microenvironment and exploring how cell-ECM interactions serve as regulators of suture stem cell fate. Making use of various microscopy and analytical techniques I first characterized the composition of the microenvironment in a developing suture niche, such as organization of ECM, cytoskeleton and nuclear morphologies. My work builds on an incomplete transcriptional understanding of suture cell development, such that specific genetic markers are rarely useful for identifying distinct suture cell populations during its morphogenesis. By applying shape description tools to parse suture cells and test whether shape correlates to cell identity, we concluded that suture nuclei are distinct and less spherical than those of other cranial tissues. Using 'global' markers such as nuclear stains, I have also identified physical distinctions between suture nuclei and neighboring tissues, indicating that cell shape is an integral part of midline suture identity and can be used to explore coordination of fate choice and morphogenesis in this enigmatic structure. In addition, I present evidence that supports that maturation of extracellular matrix begins during early stages of suture development. In particular, embryonic midline sutures express high levels of fibrillary collagen, which contributes to the formation of a complex extracellular environment that provides the suture with physical properties distinct from those of developing bones. My work shows the presence of cell-ECM and cell-cell adhesions in the developing midline sutures, as well as a complex actin cytoskeleton that is, in part, mediated by physical stresses resultant from underlying brain expansion. Secondly, I aimed to address how perturbations in ECM composition can affect cell specification. To investigate the importance of ECM maturation in regulating suture cell fate I inhibited the function of lysyl oxidase, a collagen crosslinker, during embryonic development. Disruption of collagen crosslinking altered expression of collagen and ECM receptor encoding genes. In addition, this inhibition induced changes in the shape and size of collagen fibers in the embryonic midline suture and decreased tissue bulk stiffness relative to WT. These abnormal properties of the ECM impact tissue delineation in the cranial mesenchyme through nuclear shape analyses. This might be explained by observed changes in the composition of the nuclear envelop of suture cells as we find altered lamin concentration and localization upon lysyl oxidase inhibition. The work developed during myPhD steps away from the traditional genetic approaches used to study the embryonic suture and provides the first in-depth analysis of the physical properties of the developing midline suture at stages preceding known establishment of the niche. The various methods and analyses applied reveal a complex organization of embryonic suture ECM and its tight relationship with shape and fate in this tissue. This work serves as a foundation for future studies that can explore the mechanisms through which ECM regulates fate and development of the suture niche, and potentially skeletal development more generally

    Mechanochemical Control of Stem Cell Biology in Development and Disease: Experimental and Theoretical Models

    Get PDF
    Whether a stem cell remains or egresses away from its physiological niche is a function of mechanical and soluble factors in a time-dependent manner, which implicates a `memory\u27 of prior mechanochemical conditioning. Virtually every organ in the body contains resident stem or progenitor cells that contribute to organ homeostasis or repair. The wound healing process in higher vertebrate animals is spatiotemporally complex and usually leads to scarring. Limitations for the use of stem cells as regenerative therapy include the lack of expansion capabilities in vitro as well as materials issues that complicate traditional biochemical protocols. A minimal `scar in a dish\u27 model is developed to clarify the kinetics of tension-sensitive proteins in mesenchymal stem cells (MSCs), which possess plasticity to mechanochemical changes of the microenvironment that are typical of scars. The organization and expression of such proteins implicates transcription factors that ultimately steer cell fate. In contrast to classic mechano-transducers of matrix mechanics such as actin assembly-dependent serum response factor (SRF) signaling, a novel mechano-repressive role of NKX2.5 is implicated in maintaining intracellular tension in long-term stem cell cultures on stiff matrices via nucleo-cytoplasmic shuttling — ultimately setting up a \u27mechanical memory\u27. Core gene circuits with known roles in stem cell mechanobiology are modeled based on the \u27use it or lose it\u27 concept: tension inhibits turnover of structural proteins such as extracellular collagens, cytoskeletal myosins and nucleoskeletal lamins. This theoretical approach is tested in a variety of processes in vitro and in vivo that involve forces including cardiac development, osteogenic commitment of MSCs, and fibrosis therapy. With the sophistication of the science and technology of biomaterials relevant to stem cell biology and medicine, matrix mechanics can thus be rigorously combined with biochemical instructions in order to maximize therapeutic utility of stem cells
    • …
    corecore