911 research outputs found

    A matched-filter-based reverse-time migration algorithm for ground-penetrating radar data

    Get PDF
    Ground-penetrating radar (GPR) is a remote sensing technique used to obtain information on subsurface features from data collected over the surface. The process of collecting data may be viewed as mapping from the object space to an image space. Since most GPRs use broad beamwidth antennas, the energy reflected from a buried structure is recorded over a large lateral aperture in the image space. Migration algorithms are used to reconstruct an accurate scattering map by refocusing the recorded scattering events to their true spatial locations through a backpropagation process. The goal of this paper is to present a pair of finite-difference time-domain (FDTD) reverse-time migration algorithms for CPR data processing. Linear inverse scattering theory is used to develop a matched-filter response for the GPR problem. The reverse-time migration algorithms, developed for both bistatic and monostatic antenna configurations, are implemented via FDTD in the object space. Several examples are presented

    A 2D processing algorithm for detecting landmines using Ground Penetrating Radar data

    Get PDF
    Ground Penetrating Radar(GPR) is one of a number of technologies that have been used to improve landmine detection efficiency. The clutter environment within the first few cm of the soil where landmines are buried, exhibits strong reflections with highly non-stationary statistics. An antipersonnel mine(AP) can have a diameter as low as 2cm whereas many soils have very high attenuation frequencies above 3GHZ. The landmine detection problem can be solved by carrying out system level analysis of the issues involved to synthesise an image which people can readily understand. The SIMCA (’SIMulated Correlation Algorithm’) is a technique that carries out correlation between the actual GPR trace that is recorded at the field and the ideal trace which is obtained by carrying out GPR simulation. The SIMCA algorithm firstly calculates by forward modelling a synthetic point spread function of the GPR by using the design parameters of the radar and soil properties to carry out radar simulation. This allows the derivation of the correlation kernel. The SIMCA algorithm then filters these unwanted components or clutter from the signal to enhance landmine detection. The clutter removed GPR B scan is then correlated with the kernel using the Pearson correlation coefficient. This results in a image which emphasises the target features and allows the detection of the target by looking at the brightest spots. Raising of the image to an odd power >2 enhances the target/background separation. To validate the algorithm, the length of the target in some cases and the diameter of the target in other cases, along with the burial depth obtained by the SIMCA system are compared with the actual values used during the experiments for the burial depth and those of the dimensions of the actual target. Because, due to the security intelligence involved with landmine detection and most authors work in collaboration with the national government military programs, a database of landmine signatures is not existant and the authors are also not able to publish fully their algorithms. As a result, in this study we have compared some of the cleaned images from other studies with the images obtained by our method, and I am sure the reader would agree that our algorithm produces a much clearer interpretable image

    A Multiple Migration and Stacking Algorithm Designed for Land Mine Detection

    Get PDF
    This paper describes a modification to a standard migration algorithm for land mine detection with a ground-penetrating radar (GPR) system. High directivity from the antenna requires a significantly large aperture in relation to the operating wavelength, but at the frequencies of operation of GPR, this would result in a large and impractical antenna. For operator convenience, most GPR antennas are small and exhibit low directivity and a wide beamwidth. This causes the GPR image to bear little resemblance to the actual target scattering centers. Migration algorithms attempt to reduce this effect by focusing the scattered energy from the source reflector and consequentially improve the target detection rate. However, problems occur due to the varying operational conditions, which result in the migration algorithm requiring vastly different calibration parameters. In order to combat this effect, this migration scheme stacks multiple versions of the same migrated data with different velocity values, whereas some other migration schemes only use a single velocity value

    Nonlinear Acoustics and an Inverse Scattering Problem

    Get PDF
    Abstract This Ph.D is concerned with wave propagation problems. The main focus is on nonlinear acoustics, looking at sonic boom propagation in a physically realistic atmosphere, whilst a secondary part will look at the problem of landmine detection and how to improve the target detection rates. The work on nonlinear acoustics emerged as a desire to model the behaviour of the sonic booms formed by supersonic aircraft in the atmosphere to see what environmental impact they would have on people and animals on the ground, in terms of the form of the sound waves once they reach the ground. The work on landmine detection originated from a Knowledge Transfer Partner- ship between the University of East Anglia (UEA) and Cobham Technical Services (CTS) organised through the Knowledge Transfer Network (KTN). This partnership took the form of a six month internship with work undertaken afterwards to publish the �ndings of the internship.

    Reverse-Time Migration for Evaluating the Internal Structure of Tree-Trunks Using Ground-Penetrating Radar

    Get PDF
    The authors would like to express their sincere thanks and gratitude to the following trusts, charities, organizations and individuals for their generosity in supporting this project: Lord Faringdon Charitable Trust, The Schroder Foundation, Cazenove Charitable Trust, Ernest Cook, Sir Henry Keswick, Ian Bond, P. F. Charitable Trust, Prospect Investment Management Limited, The Adrian Swire Charitable Trust, The John Swire 1989 Charitable Trust, The Sackler Trust, The Tanlaw Foundation and The Wyfold Charitable Trust. This paper is dedicated to the memory of Jonathon West, a friend, a colleague, a forester, a conservationist and an environmentalist who died following an accident in the woodland that he loved.Peer reviewedPostprin

    Coherence-factor-based rough surface clutter suppression for forward-looking GPR imaging

    Get PDF
    We present an enhanced imaging procedure for suppression of the rough surface clutter arising in forward-looking ground-penetrating radar (FL-GPR) applications. The procedure is based on a matched filtering formulation of microwave tomographic imaging, and employs coherence factor (CF) for clutter suppression. After tomographic reconstruction, the CF is first applied to generate a "coherence map" of the region in front of the FL-GPR system illuminated by the transmitting antennas. A pixel-by-pixel multiplication of the tomographic image with the coherence map is then performed to generate the clutter-suppressed image. The effectiveness of the CF approach is demonstrated both qualitatively and quantitatively using electromagnetic modeled data of metallic and plastic shallow-buried targets

    Stochastic hyperbola fitting, probabilistic inversion, reverse-time migration and clustering: A novel interpretation toolbox for in-situ planetary radar

    Get PDF
    Ground-penetrating radar (GPR) is becoming a mainstream tool in planetary exploration, and one of the few in-situ planetary geophysical methods. There are currently three missions (Perseverance, Tianwen-1, Chang'E-4) with GPR-equipped rovers, and two future missions (Chang'E-7, ExoMars) that will include GPR in their scientific payload. The large number of GPR data, combined with the novel setup of the measurements, creates the need for new data processing and interpretation techniques to address the unique challenges of in-situ planetary radar. The current paper proposes an interpretation pipeline that starts with a novel stochastic hyperbola fitting that estimates the probability kernel density of the bulk permittivity at different depths. Subsequently, the bulk permittivity distribution is transformed via a novel probabilistic inversion to a 1-dimensional (1D) permittivity profile. The inverted 1D permittivity profile is then used as an input to a bespoke reverse-time migration (RTM) using the finite-difference time-domain (FDTD) method. RTM using FDTD does not assume a clinical homogeneous half-space; instead, it accounts for the expected layered structure of the investigated medium. Lastly, the migrated radargram is clustered in order to identify subsurface targets and distinguish them from the background medium. Each of the processing steps has never been reported in planetary radar; and together act as a complete processing toolbox tuned for planetary science. The suggested interpretation pipeline is validated numerically in a 1D case study with a complex layered structure and multiple subsurface targets. The proposed processing scheme is then applied to the GPR data from the Chang'E-4 mission at the Von Karman crater, revealing a previously unseen layered structure and a complex distribution of rocks/boulders
    • …
    corecore