101 research outputs found

    Advances in Time-Domain Electromagnetic Simulation Capabilities Through the Use of Overset Grids and Massively Parallel Computing

    Get PDF
    A new methodology is presented for conducting numerical simulations of electromagnetic scattering and wave propagation phenomena. Technologies from several scientific disciplines, including computational fluid dynamics, computational electromagnetics, and parallel computing, are uniquely combined to form a simulation capability that is both versatile and practical. In the process of creating this capability, work is accomplished to conduct the first study designed to quantify the effects of domain decomposition on the performance of a class of explicit hyperbolic partial differential equations solvers; to develop a new method of partitioning computational domains comprised of overset grids; and to provide the first detailed assessment of the applicability of overset grids to the field of computational electromagnetics. Furthermore, the first Finite Volume Time Domain (FVTD) algorithm capable of utilizing overset grids on massively parallel computing platforms is developed and implemented. Results are presented for a number of scattering and wave propagation simulations conducted using this algorithm, including two spheres in close proximity and a finned missile

    An Efficient Parallel Overset Method for Aerodynamic Shape Optimization

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143038/1/6.2017-0357.pd

    Contributions to the Sixth Drag Prediction Workshop Using Structured, Overset Grid Methods

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143028/1/1.C034486.pd

    Component-based Geometry Manipulation for Aerodynamic Shape Optimization with Overset Meshes

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143082/1/6.2017-3327.pd

    Progress Toward Overset-Grid Moving Body Capability for USM3D Unstructured Flow Solver

    Get PDF
    A static and dynamic Chimera overset-grid capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. Modifications to the solver primarily consist of a few strategic calls to the Donor interpolation Receptor Transaction library (DiRTlib) to facilitate communication of solution information between various grids. The assembly of multiple overlapping grids into a single-zone composite grid is performed by the Structured, Unstructured and Generalized Grid AssembleR (SUGGAR) code. Several test cases are presented to verify the implementation, assess overset-grid solution accuracy and convergence relative to single-grid solutions, and demonstrate the prescribed relative grid motion capability

    Kestrel Results at Liftoff Conditions for a Space Launch System Configuration in Proximity to the Launch Tower

    Get PDF
    Aerodynamic data books for Space Launch System vehicles require databases for the integrated forces and moments and section loads during liftoff and transition to the ascent phase of flight. While the force and moment database can be generated from wind tunnel results, computational analyses are necessary to provide the extensive surface information required to generate proper lineloads. Of the two flight regimes, the liftoff problem is the more costly and complex situation to simulate, as it requires modeling of the vehicle in proximity to the launch tower. The effects of massive separation on the leeward pressure fields of both the tower and vehicle are not well captured with RANS methods, necessitating the use of more advanced methods, such as Delayed Detached Eddy Simulation, in conjunction with computational grids sufficiently refined to resolve the wakes. Details on the computational setup for employing the Kestrel flow solver to address the liftoff problem are presented. The methodology involves the use of independent unstructured near-body grids for the vehicle and the tower, overset by a solution adaptive Cartesian off-body grid. Results from the simulations are compared to experime ASA Langley Research Center 14- by 22-Foot Subsonic Tunnel

    Component-Based Aerodynamic Shape Optimization using Overset Meshes

    Full text link
    Advances in computational power allow the increase in the fidelity level of analysis tools used in conceptual aircraft design and optimization. These tools not only give more accurate assessments of aircraft efficiency, but also provide insights to improve the performance of next-generation aircraft. Aerodynamic shape optimization involves the inclusion of aerodynamic analysis tools in optimization frameworks to maximize the aerodynamic efficiency of an aircraft configuration via modifications of its outer mold line. When using CFD-based aerodynamic shape optimization, generating high-quality structured meshes for complex aircraft configurations becomes challenging, especially near junctions. Furthermore, mesh deformation procedures frequently generate negative volume cells when applied to these structured meshes during optimization. Complex geometries can be accurately modeled using overset meshes, whereby multiple high-quality structured meshes corresponding to different aircraft components overlap to model the complete aircraft configuration. However, from the standpoint of geometry manipulation, most methods operate on the entire geometry rather than on separate components, which diminishes the advantages of overset meshes. Tracking intersections among multiple components is a key challenge in the implementation of component-based geometry manipulation methods. The mesh nodes should also be updated in accordance to the intersection curves. This thesis addresses this issue by introducing of a geometry module that operates on individual components and uses triangulated surfaces to automatically compute intersections during optimization. A modified hyperbolic mesh marching algorithm is used to regenerate the overset meshes near intersections. The reverse-mode automatic differentiation is used to compute partial derivatives across this geometry module, so that it fits into an optimization framework that uses a hybrid adjoint method (ADjoint) to efficiently compute gradients for a large number of design variables. Particularities of the automatic differentiation of the geometry module are detailed in this thesis. By using these automatically updated meshes and the corresponding derivatives, the aerodynamic shape of the DLR-F6 geometry is optimized while allowing changes in the wing-fuselage intersection. Sixteen design variables control the fuselage shape and 128 design variables determine the wing surface. Under transonic flight conditions, the optimization reduces drag by 16 counts (5%) compared with the baseline design. This approach is also used to minimize drag of the PADRI 2017 strut-braced wing benchmark for a fixed lift constraint at transonic flight conditions. The drag of the optimized configuration is 15% lower than the baseline due to reduction of shocks and separation in the wing-strut junction region. This result is an example where high-fidelity modeling is required to quantify the benefits of a new aircraft configuration and address potential issues during the conceptual design. The methodologies developed in this work give additional flexibility for geometry and mesh manipulation tools used in aerodynamic shape optimization frameworks. This extends the applicability of design optimization tools to provide insights to more complex cases involving multiple components, including unconventional aircraft configurations.PHDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146042/1/neysecco_1.pd

    An Efficient Sliding Mesh Interface Method for High-Order Discontinuous Galerkin Schemes

    Full text link
    Sliding meshes are a powerful method to treat deformed domains in computational fluid dynamics, where different parts of the domain are in relative motion. In this paper, we present an efficient implementation of a sliding mesh method into a discontinuous Galerkin compressible Navier-Stokes solver and its application to a large eddy simulation of a 1-1/2 stage turbine. The method is based on the mortar method and is high-order accurate. It can handle three-dimensional sliding mesh interfaces with various interface shapes. For plane interfaces, which are the most common case, conservativity and free-stream preservation are ensured. We put an emphasis on efficient parallel implementation. Our implementation generates little computational and storage overhead. Inter-node communication via MPI in a dynamically changing mesh topology is reduced to a bare minimum by ensuring a priori information about communication partners and data sorting. We provide performance and scaling results showing the capability of the implementation strategy. Apart from analytical validation computations and convergence results, we present a wall-resolved implicit LES of the 1-1/2 stage Aachen turbine test case as a large scale practical application example

    Structured Overlapping Grid Simulations of Contra-rotating Open Rotor Noise

    Get PDF
    Computational simulations using structured overlapping grids with the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework are presented for predicting tonal noise generated by a contra-rotating open rotor (CROR) propulsion system. A coupled Computational Fluid Dynamics (CFD) and Computational AeroAcoustics (CAA) numerical approach is applied. Three-dimensional time-accurate hybrid Reynolds Averaged Navier-Stokes/Large Eddy Simulation (RANS/LES) CFD simulations are performed in the inertial frame, including dynamic moving grids, using a higher-order accurate finite difference discretization on structured overlapping grids. A higher-order accurate free-stream preserving metric discretization with discrete enforcement of the Geometric Conservation Law (GCL) on moving curvilinear grids is used to create an accurate, efficient, and stable numerical scheme. The aeroacoustic analysis is based on a permeable surface Ffowcs Williams-Hawkings (FW-H) approach, evaluated in the frequency domain. A time-step sensitivity study was performed using only the forward row of blades to determine an adequate time-step. The numerical approach is validated against existing wind tunnel measurements
    • …
    corecore