3 research outputs found

    A Novel Systolic Parallel Hardware Architecture for the FPGA Acceleration of Feedforward Neural Networks

    Get PDF
    New chips for machine learning applications appear, they are tuned for a specific topology, being efficient by using highly parallel designs at the cost of high power or large complex devices. However, the computational demands of deep neural networks require flexible and efficient hardware architectures able to fit different applications, neural network types, number of inputs, outputs, layers, and units in each layer, making the migration from software to hardware easy. This paper describes novel hardware implementing any feedforward neural network (FFNN): multilayer perceptron, autoencoder, and logistic regression. The architecture admits an arbitrary input and output number, units in layers, and a number of layers. The hardware combines matrix algebra concepts with serial-parallel computation. It is based on a systolic ring of neural processing elements (NPE), only requiring as many NPEs as neuron units in the largest layer, no matter the number of layers. The use of resources grows linearly with the number of NPEs. This versatile architecture serves as an accelerator in real-time applications and its size does not affect the system clock frequency. Unlike most approaches, a single activation function block (AFB) for the whole FFNN is required. Performance, resource usage, and accuracy for several network topologies and activation functions are evaluated. The architecture reaches 550 MHz clock speed in a Virtex7 FPGA. The proposed implementation uses 18-bit fixed point achieving similar classification performance to a floating point approach. A reduced weight bit size does not affect the accuracy, allowing more weights in the same memory. Different FFNN for Iris and MNIST datasets were evaluated and, for a real-time application of abnormal cardiac detection, a x256 acceleration was achieved. The proposed architecture can perform up to 1980 Giga operations per second (GOPS), implementing the multilayer FFNN of up to 3600 neurons per layer in a single chip. The architecture can be extended to bigger capacity devices or multi-chip by the simple NPE ring extension

    Design for novel enhanced weightless neural network and multi-classifier.

    Get PDF
    Weightless neural systems have often struggles in terms of speed, performances, and memory issues. There is also lack of sufficient interfacing of weightless neural systems to others systems. Addressing these issues motivates and forms the aims and objectives of this thesis. In addressing these issues, algorithms are formulated, classifiers, and multi-classifiers are designed, and hardware design of classifier are also reported. Specifically, the purpose of this thesis is to report on the algorithms and designs of weightless neural systems. A background material for the research is a weightless neural network known as Probabilistic Convergent Network (PCN). By introducing two new and different interfacing method, the word "Enhanced" is added to PCN thereby giving it the name Enhanced Probabilistic Convergent Network (EPCN). To solve the problem of speed and performances when large-class databases are employed in data analysis, multi-classifiers are designed whose composition vary depending on problem complexity. It also leads to the introduction of a novel gating function with application of EPCN as an intelligent combiner. For databases which are not very large, single classifiers suffices. Speed and ease of application in adverse condition were considered as improvement which has led to the design of EPCN in hardware. A novel hashing function is implemented and tested on hardware-based EPCN. Results obtained have indicated the utility of employing weightless neural systems. The results obtained also indicate significant new possible areas of application of weightless neural systems

    NASA Tech Briefs, April 1992

    Get PDF
    Topics covered include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences
    corecore