123 research outputs found

    Composing and Factoring Generalized Green's Operators and Ordinary Boundary Problems

    Full text link
    We consider solution operators of linear ordinary boundary problems with "too many" boundary conditions, which are not always solvable. These generalized Green's operators are a certain kind of generalized inverses of differential operators. We answer the question when the product of two generalized Green's operators is again a generalized Green's operator for the product of the corresponding differential operators and which boundary problem it solves. Moreover, we show that---provided a factorization of the underlying differential operator---a generalized boundary problem can be factored into lower order problems corresponding to a factorization of the respective Green's operators. We illustrate our results by examples using the Maple package IntDiffOp, where the presented algorithms are implemented.Comment: 19 page

    Gr\"obner Bases and Generation of Difference Schemes for Partial Differential Equations

    Full text link
    In this paper we present an algorithmic approach to the generation of fully conservative difference schemes for linear partial differential equations. The approach is based on enlargement of the equations in their integral conservation law form by extra integral relations between unknown functions and their derivatives, and on discretization of the obtained system. The structure of the discrete system depends on numerical approximation methods for the integrals occurring in the enlarged system. As a result of the discretization, a system of linear polynomial difference equations is derived for the unknown functions and their partial derivatives. A difference scheme is constructed by elimination of all the partial derivatives. The elimination can be achieved by selecting a proper elimination ranking and by computing a Gr\"obner basis of the linear difference ideal generated by the polynomials in the discrete system. For these purposes we use the difference form of Janet-like Gr\"obner bases and their implementation in Maple. As illustration of the described methods and algorithms, we construct a number of difference schemes for Burgers and Falkowich-Karman equations and discuss their numerical properties.Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Au Sujet des Approches Symboliques des Équations Intégro-Différentielles

    Get PDF
    International audienceRecent progress in computer algebra has opened new opportunities for the parameter estimation problem in nonlinear control theory, by means of integro-differential input-output equations. This paper recalls the origin of integro-differential equations. It presents new opportunities in nonlinear control theory. Finally, it reviews related recent theoretical approaches on integro-differential algebras, illustrating what an integro-differential elimination method might be and what benefits the parameter estimation problem would gain from it.Un résultat récent en calcul formel a ouvert de nouvelles opportunités pour l'estimation de paramètres en théorie du contrôle non linéaire, via des équations entrée-sortie intégro-différentielles. Ce chapitre rappelle les origines des équations intégro-différentielles. Il présente de nouvelles opportunités en théorie du contrôle non linéaire. Finalement, il passe en revue des approches théoriques récentes sur les algèbres intégro-différentielles, illustrant ce qu'une méthode d'élimination intégro-différentielle pourrait être et les bénéfices que le problème de l'estimation de paramètres pourrait en tirer

    Implementation of the matrix differential transform method for obtaining an approximate solution of some nonlinear matrix evolution equations

    Get PDF
    This article introduces the matrix differential transform method (MDTM) to apply to matrix partial differential equations (MPDEs) and employs it for solving matrix Fisher equations, matrix Burgers equations and matrix KdV equations. We show how the MDTM applies to the linear part and nonlinear part of any MPDE and give various examples of MPDEs to illustrate the efficiency of the method. The results obtained are in excellent agreement with the exact solution and show that the proposed method is powerful, accurate, and easy

    Calcul des solutions polynomiales et des annulateurs d’opérateurs intégro-différentiels à coefficients polynomiaux

    Get PDF
    In this paper, we study algorithmic aspects of the algebra of linear ordinary integro-differential operators with polynomial coefficients. Even though this algebra is not Noetherian and has zero divisors, Bavula recently proved that it is coherent, which allows one to develop an algebraic systems theory over this algebra. For an algorithmic approach to linear systems of integro-differential equations with boundary conditions, computing the kernel of matrices with entries in this algebra is a fundamental task. As a first step, we have to find annihilators of integro-differential operators, which, in turn, is related to the computation of polynomial solutions of such operators. For a class of linear operators including integro-differential operators, we present an algorithmic approach for computing polynomial solutions and the index. A generating set for right annihilators can be constructed in terms of such polynomial solutions. For initial value problems, an involution of the algebra of integro-differential operators then allows us to compute left annihilators, which can be interpreted as compatibility conditions of integro-differential equations with boundary conditions. We illustrate our approach using an implementation in the computer algebra system Maple.Dans ce papier, nous étudions certains aspects algorithmiques de l’algèbre des opérateurs intégro-différentiels ordinaires linéaires à coefficients polynomiaux. Même si cette algèbre n’est pas noetherienne et admet des diviseurs de zéro, Bavula a récemment montré qu’elle était cohérente, ce qui permet le développement d’une théorie algébrique des systèmes linéaires sur cette algèbre. Pour une approche algorithmique des systèmeslinéaires d’équations intégro-différentielles ordinaires avec conditions aux bords, le calcul du noyau de matrices à coefficients dans cette algèbre est un problème fondamental. Pour cela, dans un premier temps, nous sommes amenés à calculer les annulateurs d’opérateurs intégro-différentiels, problème qui, à son tour, est relié au problème du calcul des solutions polynomiales de tels opérateurs. Pour une classe d’opérateurs linéaires incluant les opérateurs intégro-différentiels, nous présentons une approche algorithmique pour le calcul des solutions polynomiales et de l’indice. Un ensemble générateur des annulateurs à droite d’un opérateur intégro-différentiel est alors construit grâce au calcul de solutions polynomiales. Pour les problèmes avec conditions initiales, une involution de l’algèbre des opérateurs intégro-différentiels nous permet ensuite de calculer les annulateurs à gauche, qui peuvent être interprétés comme des conditions de compatibilité d’équations intégro-différentielles avec conditions aux bords. Nous illustrons notre approche à l’aide d’une implémentation dans le système de calcul formel Maple

    Algebraic aspects of differential equations

    Get PDF
    This thesis considers algebraic properties of differential equations, and can be divided into two parts. The major distinction among them is that the first part deals with the theory of linear ordinary differential equations, while the second part deals with the nonlinear partial differential equations. In the first part, we present a method to transform the Green's operator into the Green's function. This transformation is already known in the classical case of well-posed two-point boundary value problems, here we extend it to the whole class of Stieltjes boundary problems. In comparison, Stieltjes boundary problems have more freedom from which stems more difficulties. In view of the specification of the boundary conditions: (1) they allow more than two evaluation points. (2) they allow derivatives of arbitrary order; (3) global terms in the form of definite integrals are also allowed. Our results show that the resulting Green's function is not only a piecewise function but also a distribution. Using suitable differential and Rota-Baxter structures, we aim to provide the algebraic underpinning for symbolic computation systems handling such objects. In particular, we show that the Green's function of regular boundary problems (for linear ordinary differential equations) can be expressed naturally in the new setting and that it is characterized by the corresponding distributional differential equation known from analysis. In the second part we concern ourselves with integrable systems. A system of partial differential equations is called integrable\textit{integrable} if it exhibits infinitely many symmetries. Master symmetries provide a tool which guarantees the existence of infinitely many symmetries and thus help in determining proof of integrability. Using the O\textit{O}-scheme developed by Wang (2015), we compute master symmetries for three new two-component third order Burgers' type systems with non-diagonal constant matrix of leading order terms. These systems can be found in the work of Talati and Turhan (2016). Two more systems with the same dimension are also presented from the ongoing work of Wang et al. In the end, we compute a master symmetry for a Davey-Stewartson type system which is a (2+1)-dimensional system
    corecore