3,058 research outputs found

    Genetic learning particle swarm optimization

    Get PDF
    Social learning in particle swarm optimization (PSO) helps collective efficiency, whereas individual reproduction in genetic algorithm (GA) facilitates global effectiveness. This observation recently leads to hybridizing PSO with GA for performance enhancement. However, existing work uses a mechanistic parallel superposition and research has shown that construction of superior exemplars in PSO is more effective. Hence, this paper first develops a new framework so as to organically hybridize PSO with another optimization technique for “learning.” This leads to a generalized “learning PSO” paradigm, the *L-PSO. The paradigm is composed of two cascading layers, the first for exemplar generation and the second for particle updates as per a normal PSO algorithm. Using genetic evolution to breed promising exemplars for PSO, a specific novel *L-PSO algorithm is proposed in the paper, termed genetic learning PSO (GL-PSO). In particular, genetic operators are used to generate exemplars from which particles learn and, in turn, historical search information of particles provides guidance to the evolution of the exemplars. By performing crossover, mutation, and selection on the historical information of particles, the constructed exemplars are not only well diversified, but also high qualified. Under such guidance, the global search ability and search efficiency of PSO are both enhanced. The proposed GL-PSO is tested on 42 benchmark functions widely adopted in the literature. Experimental results verify the effectiveness, efficiency, robustness, and scalability of the GL-PSO

    Diversifying Multi-Objective Gradient Techniques and their Role in Hybrid Multi-Objective Evolutionary Algorithms for Deformable Medical Image Registration

    Get PDF
    Gradient methods and their value in single-objective, real-valued optimization are well-established. As such, they play a key role in tackling real-world, hard optimization problems such as deformable image registration (DIR). A key question is to which extent gradient techniques can also play a role in a multi-objective approach to DIR. We therefore aim to exploit gradient information within an evolutionary-algorithm-based multi-objective optimization framework for DIR. Although an analytical description of the multi-objective gradient (the set of all Pareto-optimal improving directions) is available, it is nontrivial how to best choose the most appropriate direction per solution because these directions are not necessarily uniformly distributed in objective space. To address this, we employ a Monte-Carlo method to obtain a discrete, spatially-uniformly distributed approximation of the set of Pareto-optimal improving directions. We then apply a diversification technique in which each solution is associated with a unique direction from this set based on its multi- as well as single-objective rank. To assess its utility, we compare a state-of-the-art multi-objective evolutionary algorithm with three different hybrid versions thereof on several benchmark problems and two medical DIR problems. Results show that the diversification strategy successfully leads to unbiased improvement, helping an adaptive hybrid scheme solve all problems, but the evolutionary algorithm remains the most powerful optimization method, providing the best balance between proximity and diversity

    Bio-inspired Algorithms for TSP and Generalized TSP

    Get PDF

    進化計算の医学・工学への応用に関する研究

    Get PDF
    富山大学・富理工博甲第216号・雷振宇・2023/3/23富山大学202

    On the use of polynomial models in multiobjective directional direct search

    Get PDF
    FCT - Fundacao para a Ciencia e a Tecnologia PTDC/MAT-APL/28400/2017; UIDB/00297/2020.Polynomial interpolation or regression models are an important tool in Derivative-free Optimization, acting as surrogates of the real function. In this work, we propose the use of these models in the multiobjective framework of directional direct search, namely the one of Direct Multisearch. Previously evaluated points are used to build quadratic polynomial models, which are minimized in an attempt of generating nondominated points of the true function, defining a search step for the algorithm. Numerical results state the competitiveness of the proposed approach.authorsversionpublishe

    Optimization of Thermo-mechanical Conditions in Friction Stir Welding

    Get PDF

    Discrete particle swarm optimization for combinatorial problems with innovative applications.

    Get PDF
    Master of Science in Computer Science. University of KwaZulu-Natal, Durban 2016.Abstract available in PDF file
    corecore