1,618 research outputs found

    A Management Framework for Secure Multiparty Computation in Dynamic Environments

    Full text link
    Secure multiparty computation (SMC) is a promising technology for privacy-preserving collaborative computation. In the last years several feasibility studies have shown its practical applicability in different fields. However, it is recognized that administration and management overhead of SMC solutions are still a problem. A vital next step is the incorporation of SMC in the emerging fields of the Internet of Things and (smart) dynamic environments. In these settings, the properties of these contexts make utilization of SMC even more challenging since some of its vital premises regarding environmental stability and preliminary configuration are not initially fulfilled. We bridge this gap by providing FlexSMC, a management and orchestration framework for SMC which supports the discovery of nodes, supports a trust establishment between them and realizes robustness of SMC session by handling nodes failures and communication interruptions. The practical evaluation of FlexSMC shows that it enables the application of SMC in dynamic environments with reasonable performance penalties and computation durations allowing soft real-time and interactive use cases

    Leveraging Secure Multiparty Computation in the Internet of Things

    Full text link
    Centralized systems in the Internet of Things---be it local middleware or cloud-based services---fail to fundamentally address privacy of the collected data. We propose an architecture featuring secure multiparty computation at its core in order to realize data processing systems which already incorporate support for privacy protection in the architecture

    Authentication and authorisation in entrusted unions

    Get PDF
    This paper reports on the status of a project whose aim is to implement and demonstrate in a real-life environment an integrated eAuthentication and eAuthorisation framework to enable trusted collaborations and delivery of services across different organisational/governmental jurisdictions. This aim will be achieved by designing a framework with assurance of claims, trust indicators, policy enforcement mechanisms and processing under encryption to address the security and confidentiality requirements of large distributed infrastructures. The framework supports collaborative secure distributed storage, secure data processing and management in both the cloud and offline scenarios and is intended to be deployed and tested in two pilot studies in two different domains, viz, Bio-security incident management and Ambient Assisted Living (eHealth). Interim results in terms of security requirements, privacy preserving authentication, and authorisation are reported

    Combining behavioural types with security analysis

    Get PDF
    Today's software systems are highly distributed and interconnected, and they increasingly rely on communication to achieve their goals; due to their societal importance, security and trustworthiness are crucial aspects for the correctness of these systems. Behavioural types, which extend data types by describing also the structured behaviour of programs, are a widely studied approach to the enforcement of correctness properties in communicating systems. This paper offers a unified overview of proposals based on behavioural types which are aimed at the analysis of security properties

    Privacy-preserving scoring of tree ensembles : a novel framework for AI in healthcare

    Get PDF
    Machine Learning (ML) techniques now impact a wide variety of domains. Highly regulated industries such as healthcare and finance have stringent compliance and data governance policies around data sharing. Advances in secure multiparty computation (SMC) for privacy-preserving machine learning (PPML) can help transform these regulated industries by allowing ML computations over encrypted data with personally identifiable information (PII). Yet very little of SMC-based PPML has been put into practice so far. In this paper we present the very first framework for privacy-preserving classification of tree ensembles with application in healthcare. We first describe the underlying cryptographic protocols that enable a healthcare organization to send encrypted data securely to a ML scoring service and obtain encrypted class labels without the scoring service actually seeing that input in the clear. We then describe the deployment challenges we solved to integrate these protocols in a cloud based scalable risk-prediction platform with multiple ML models for healthcare AI. Included are system internals, and evaluations of our deployment for supporting physicians to drive better clinical outcomes in an accurate, scalable, and provably secure manner. To the best of our knowledge, this is the first such applied framework with SMC-based privacy-preserving machine learning for healthcare

    Dynamic Multiparty Authentication of Data Analytics Services within Cloud Environments

    Get PDF
    Business analytics processes are often composed from orchestrated, collaborating services, which are consumed by users from multiple cloud systems (in different security realms), which need to be engaged dynamically at runtime. If heterogeneous cloud systems located in different security realms do not have direct authentication relationships, then it is a considerable technical challenge to enable secure collaboration. In order to address this security challenge, a new authentication framework is required to establish trust amongst business analytics service instances and users by distributing a common session secret to all participants of a session. We address this challenge by designing and implementing a secure multiparty authentication framework for dynamic interaction, for the scenario where members of different security realms express a need to access orchestrated services. This novel framework exploits the relationship of trust between session members in different security realms, to enable a user to obtain security credentials that access cloud resources in a remote realm. The mechanism assists cloud session users to authenticate their session membership, thereby improving the performance of authentication processes within multiparty sessions. We see applicability of this framework beyond multiple cloud infrastructure, to that of any scenario where multiple security realms has the potential to exist, such as the emerging Internet of Things (IoT).Comment: Submitted to the 20th IEEE International Conference on High Performance Computing and Communications 2018 (HPCC2018), 28-30 June 2018, Exeter, U

    A threshold secure data sharing scheme for federated clouds

    Full text link
    Cloud computing allows users to view computing in a new direction, as it uses the existing technologies to provide better IT services at low-cost. To offer high QOS to customers according SLA, cloud services broker or cloud service provider uses individual cloud providers that work collaboratively to form a federation of clouds. It is required in applications like Real-time online interactive applications, weather research and forecasting etc., in which the data and applications are complex and distributed. In these applications secret data should be shared, so secure data sharing mechanism is required in Federated clouds to reduce the risk of data intrusion, the loss of service availability and to ensure data integrity. So In this paper we have proposed zero knowledge data sharing scheme where Trusted Cloud Authority (TCA) will control federated clouds for data sharing where the secret to be exchanged for computation is encrypted and retrieved by individual cloud at the end. Our scheme is based on the difficulty of solving the Discrete Logarithm problem (DLOG) in a finite abelian group of large prime order which is NP-Hard. So our proposed scheme provides data integrity in transit, data availability when one of host providers are not available during the computation.Comment: 8 pages, 3 Figures, International Journal of Research in Computer Science 2012. arXiv admin note: text overlap with arXiv:1003.3920 by other author
    corecore